A Refined ERR-based Method for Nonlinear System Identification. Application to Epilepsy.

M. Greige, A. Karfoul, I. Merlet, R. Le Bouquin Jeannès

LTSI, Inserm U1099, Université de Rennes, France

IARIA – Signal 2023

March 15, 2023

Summary

- I Context
- II Connectivity
- III Method
- IV Results
- V Conclusion

Summary

- I Context
- II Connectivity
- III Method
- IV Results
- V Conclusion

Epilepsy

Clinical context - Epilepsy

- A chronic neurological disease that affects about 0.6% to 0.7% of the world population
- Seizures are marked by sudden and recurrent electro-chemical discharges in groups of neurons
- An epileptic seizure is usually divided into three phases: Preictal, Ictal and Post-ictal phases

Epilepsy – Symptoms

Hearing impairments

Visual hallucinations

Epilepsy – Drug Responsiveness

Extracted from [3]

[3] https://www.buzzfeed.com/drumoorhouse/17-things-people-with-epilepsy-want-you-to-know

Epilepsy – Therapy

Drug-resistant patients

Ketogenic diet

[4] https://medicine.iu.edu/news/2015/06/salanova-epilepsy-brain-stimulation-1
[5] https://www.epilepsy.com/treatment/dietary-therapies/ketogenic-diet
[6] https://www.epilepsy.com/treatment/surgery/types

Motivation

Identify and characterize regions responsible for the seizure onset

Regions responsible for seizures

Brain connectivity

[7] https://www.frontiersin.org/articles/10.3389/fninf.2016.00015/full

Summary

I – Context

II - Connectivity

- III Method
- IV Results
- V Conclusion

Brain Connectivity (1/3)

- Structural connectivity also called "anatomical connectivity"
- A network of physical or structural links (synaptic connections) between pairs of brain regions

[8] O. Sporns, Brain Connectivity, Scholarpedia, 2(10), 2007.

Brain Connectivity (2/3)

- Statistical dependencies among remote neurophysiological events
- Temporal correlation among the activities of neural assemblies

[8] O. Sporns, Brain Connectivity, Scholarpedia, 2(10), 2007.

Brain Connectivity (3/3)

- Completes the notions of structural and functional connectivities
- Causal influences between different neurons or neuronal populations

[8] O. Sporns, Brain Connectivity, Scholarpedia, 2(10), 2007.

Summary

- I Context
- II Connectivity

III – Method

- IV Results
- V Conclusion

iEEG Channels

N: total number of channels iEEG: intracranial ElectroEncephaloGraphy

iEEG signals

$$\boldsymbol{y} = \sum_{i=1}^{N_m} \boldsymbol{\alpha}_i \widetilde{\boldsymbol{y}}_i + \boldsymbol{w}$$

 N_m : number of signals influencing y α_i : *i*-th decomposition coefficient $\boldsymbol{\alpha} = [\alpha_1, \alpha_2, ..., \alpha_{N_m}]$ \tilde{y}_i : *i*-th signal influencing y

w : model residual related to y

rERR-based method: Principle

- 1. Select candidates from an initial dictionary using the error reduction ratio (ERR)-based method
- 2. Refine the ERR solution based on the assumption of a sparse representation of the model coefficient vector

Candidates selection (1/3)

Create an initial dictionary **D**

$$\boldsymbol{D}$$
: $[\boldsymbol{d}^{(1)}, \boldsymbol{d}^{(2)}, \dots, \boldsymbol{d}^{(N)}]$

 $\boldsymbol{D} \in \mathbb{R}^{T \times N}$

N: total number of candidates

Candidates selection (1/3)

Create an initial dictionary **D**

$$D: [d^{(1)}, d^{(2)}, ..., d^{(N)}]$$

 $\boldsymbol{D} \in \mathbb{R}^{T imes N}$

N: total number of candidates

$$\mathbf{y}_m = \mathbf{D}_m \mathbf{\alpha}_m + \mathbf{w}_m$$

= $\mathbf{D} \mathbf{\Pi} \mathbf{\Pi}^{-1} \mathbf{\theta}_m + \mathbf{w}_m$ $\mathbf{\Pi}$: selection matrix

Candidates selection (1/3)

Create an initial dictionary **D**

D:
$$[d^{(1)}, d^{(2)}, ..., d^{(N)}]$$

 $\boldsymbol{D} \in \mathbb{R}^{T \times N}$ N: total number of candidates

$$\mathbf{y}_m = \mathbf{D}_m \mathbf{\alpha}_m + \mathbf{w}_m$$

= $\mathbf{D} \mathbf{\Pi} \mathbf{\Pi}^{-1} \mathbf{\theta}_m + \mathbf{w}_m$ $\mathbf{\Pi}$: selection matrix

Decompose the signal y_m

D is decomposed into D = UW where $U \in \mathbb{R}^{T \times N}$, $W \in \mathbb{R}^{N \times N}$

 $\Rightarrow y = UW\theta + w = U\widetilde{\theta} + w$

U: orthogonal upper matrix

W: upper triangular matrix

 $\widetilde{\boldsymbol{ heta}}$: coefficient vector

Candidates selection (2/3)

Most relevant column vectors of U encoded in \tilde{U}

$$\widetilde{\boldsymbol{U}}_{k_i} = \boldsymbol{D}^{-(k_i-1)} - \boldsymbol{H}_{k_i} \widetilde{\boldsymbol{U}}_{k_i-1}$$

 H_{k_i} : diagonal matrix related to the k_i -th selected candidate, obtained by solving the following optimization problem:

$$\boldsymbol{H}_{k_{i}}^{*} = argmin_{\boldsymbol{H}_{k_{i}}} \left\| \boldsymbol{D}^{-(k_{i}-1)} - \widetilde{\boldsymbol{U}}_{k_{i-1}} \boldsymbol{H}_{k_{i}} \right\|_{F}^{2}$$

s.t. $\boldsymbol{H}_{k_{i},i,j} = 0, \forall i \neq j$

where $H_{k_i,i,j}$ is the (i,j)-th entry of H_{k_i}

Candidates selection (2/3)

Most relevant column vectors of U encoded in \tilde{U}

$$\widetilde{\boldsymbol{U}}_{k_i} = \boldsymbol{D}^{-(k_i-1)} - \boldsymbol{H}_{k_i} \widetilde{\boldsymbol{U}}_{k_i-1}$$

 H_{k_i} : diagonal matrix related to the k_i -th selected candidate, obtained by solving the following optimization problem:

$$\boldsymbol{H}_{k_{i}}^{*} = argmin_{\boldsymbol{H}_{k_{i}}} \left\| \boldsymbol{D}^{-(k_{i}-1)} - \widetilde{\boldsymbol{U}}_{k_{i-1}} \boldsymbol{H}_{k_{i}} \right\|_{F}^{2}$$

s.t. $\boldsymbol{H}_{k_{i},i,j} = 0, \forall i \neq j$

where $H_{k_i,i,j}$ is the (i,j)-th entry of H_{k_i}

Related coefficient vector $\tilde{\theta}$

$$\widetilde{\boldsymbol{\theta}}_{k_{i}}^{*} = argmin_{\widetilde{\boldsymbol{\theta}}_{k_{i}}} \left\| \boldsymbol{y} - \widetilde{\boldsymbol{U}}_{k_{i}} \widetilde{\boldsymbol{\theta}}_{k_{i}} \right\|_{2}^{2}$$

Candidates selection (3/3)

ERR vector \boldsymbol{e} $\boldsymbol{\theta}_{k_i}^{\odot^2} = \boldsymbol{\tilde{\theta}} \odot \boldsymbol{\tilde{\theta}}, \odot$: Hadamard product $\boldsymbol{\Lambda} = \operatorname{diag}(\|\boldsymbol{u}_{k_i}^1\|_2^2, \dots, \|\boldsymbol{u}_{N-k_i+1}^1\|_2^2)$ $\boldsymbol{\Psi} = \frac{1}{\|\boldsymbol{y}\|_2^2} \boldsymbol{I}_{N-k_i+1}$

Candidates selection (3/3)

ERR vector e

$$\boldsymbol{e}_{k_i} = \boldsymbol{\Lambda} \boldsymbol{\Psi} \widetilde{\boldsymbol{\theta}}_{k_i}^{\odot^2}$$

 $\widetilde{\boldsymbol{\theta}}_{k_i}^{\odot^2} = \widetilde{\boldsymbol{\theta}} \odot \widetilde{\boldsymbol{\theta}}, \odot$: Hadamard product

$$\Lambda = \text{diag}(\|u_{k_i}^1\|_2^2, \dots, \|u_{N-k_i+1}^1\|_2^2)$$

$$\Psi = \frac{1}{\|y\|_2^2} I_{N-k_i+1}$$

Repeat until a certain threshold is reached

$$1 - \sum_{i=1}^{N_m} \boldsymbol{e}_{max}^{(i)} < \varepsilon$$

where N_m is the number of retained candidates and ε is a predefined threshold

Candidates selection (3/3)

ERR vector e

$$\boldsymbol{e}_{k_i} = \boldsymbol{\Lambda} \boldsymbol{\Psi} \boldsymbol{\widetilde{\theta}}_{k_i}^{\odot^2}$$

 $\widetilde{\boldsymbol{\theta}}_{k_i}^{\odot^2} = \widetilde{\boldsymbol{\theta}} \odot \widetilde{\boldsymbol{\theta}}, \odot$: Hadamard product

Repeat until a certain threshold is reached

$$1 - \sum_{i=1}^{N_m} \boldsymbol{e}_{max}^{(i)} < \varepsilon$$

where N_m is the number of retained candidates and ε is a predefined threshold

 $\Lambda = \text{diag}(\|u_{k_i}^1\|_2^2, \dots, \|u_{N-k_i+1}^1\|_2^2)$

 $\boldsymbol{\Psi} = \frac{1}{\|\boldsymbol{y}\|_2^2} \boldsymbol{I}_{N-k_i+1}$

New dictionary **D**₁ containing the most relevant candidates of **D**

D₁:
$$[d_1^{(1)}, d_1^{(2)}, ..., d_1^{(N_m)}]$$

Refined ERR selection (1/2)

Hypothesis: sparse representation of the coefficient vector $\boldsymbol{\theta}$

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \frac{\lambda}{2} \|\boldsymbol{y} - \boldsymbol{x}\|_2^2 + \|\boldsymbol{z}\|_1$$

s.t. $\boldsymbol{x} = \boldsymbol{D}_1 \boldsymbol{\theta}$ and $\boldsymbol{z} = \boldsymbol{\theta}$

$$\boldsymbol{\theta}^* = \operatorname{argmin}_{\boldsymbol{\theta}} \frac{\lambda}{2} \|\boldsymbol{y} - \boldsymbol{x}\|_2^2 + \|\boldsymbol{z}\|_1 + \frac{\rho_1}{2} \|\boldsymbol{\theta} - \boldsymbol{z}\|_2^2 + \boldsymbol{v}^T (\boldsymbol{\theta} - \boldsymbol{z}) + \frac{\rho_2}{2} \|\boldsymbol{D}_1 \boldsymbol{\theta} - \boldsymbol{x}\|_2^2 + \boldsymbol{g}^T (\boldsymbol{D}_1 \boldsymbol{\theta} - \boldsymbol{x})$$

 $\boldsymbol{\theta}^* = aramin_{o}L(\mathbf{x} \mathbf{z} \boldsymbol{\theta} \mathbf{v} \mathbf{a} \boldsymbol{\lambda})$

L: augmented Lagrangian x, z: dual variables v, g: Lagrangian multipliers λ, ρ_1, ρ_2 : regularization parameters

Refined ERR selection (2/2)

g))

Resolution using the PALM method

Update rules:

$$\boldsymbol{\theta} = (\rho_1 \boldsymbol{I}_N + \rho_2 \boldsymbol{D}_1^T \boldsymbol{D}_1)^{-1} (\boldsymbol{v} + \rho_1 \boldsymbol{z} + \boldsymbol{D}_1^T (\rho_2 \boldsymbol{x} - \boldsymbol{x}))$$
$$\boldsymbol{x} = \frac{\lambda \boldsymbol{y} + \boldsymbol{g} + \rho_2 \boldsymbol{D}_1 \boldsymbol{\theta}}{\lambda + \rho_2}$$
$$\Delta \boldsymbol{v} = \rho_1 (\boldsymbol{\theta} - \boldsymbol{z}), \qquad \Delta \boldsymbol{g} = \rho_2 (\boldsymbol{D}_1 \boldsymbol{\theta} - \boldsymbol{x})$$
$$\boldsymbol{z} = prox_{\phi, \lambda c_z} (\boldsymbol{z} - \frac{1}{c_z} \nabla_z L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\theta}, \boldsymbol{v}, \boldsymbol{g}, \lambda))$$

prox: shrinkage operator

 $\phi = \|.\|_1$

Refined ERR selection (2/2)

Resolution using the PALM method

Update rules:

$$\boldsymbol{\theta} = (\rho_1 \boldsymbol{I}_N + \rho_2 \boldsymbol{D}_1^T \boldsymbol{D}_1)^{-1} (\boldsymbol{v} + \rho_1 \boldsymbol{z} + \boldsymbol{D}_1^T (\rho_2 \boldsymbol{x} - \boldsymbol{g}))$$

$$\boldsymbol{x} = \frac{\lambda \boldsymbol{y} + \boldsymbol{g} + \rho_2 \boldsymbol{D}_1 \boldsymbol{\theta}}{\lambda + \rho_2}$$

$$\Delta \boldsymbol{v} = \rho_1 (\boldsymbol{\theta} - \boldsymbol{z}), \qquad \Delta \boldsymbol{g} = \rho_2 (\boldsymbol{D}_1 \boldsymbol{\theta} - \boldsymbol{x})$$

$$\boldsymbol{z} = prox_{\phi, \lambda c_z} \left(\boldsymbol{z} - \frac{1}{c_z} \nabla_z L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\theta}, \boldsymbol{v}, \boldsymbol{g}, \lambda) \right)$$
Steepest descent rule

prox: shrinkage operator

 $\phi = \|.\|_1$

Refined ERR selection (2/2)

g))

Resolution using the PALM method

Update rules:

$$\boldsymbol{\theta} = (\rho_1 \boldsymbol{I}_N + \rho_2 \boldsymbol{D}_1^T \boldsymbol{D}_1)^{-1} (\boldsymbol{v} + \rho_1 \boldsymbol{z} + \boldsymbol{D}_1^T (\rho_2 \boldsymbol{x} - \boldsymbol{x}))$$
$$\boldsymbol{x} = \frac{\lambda \boldsymbol{y} + \boldsymbol{g} + \rho_2 \boldsymbol{D}_1 \boldsymbol{\theta}}{\lambda + \rho_2}$$
$$\Delta \boldsymbol{v} = \rho_1 (\boldsymbol{\theta} - \boldsymbol{z}), \qquad \Delta \boldsymbol{g} = \rho_2 (\boldsymbol{D}_1 \boldsymbol{\theta} - \boldsymbol{x})$$
$$\boldsymbol{z} = prox_{\phi, \lambda c_z} (\boldsymbol{z} - \frac{1}{c_z} \nabla_z L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\theta}, \boldsymbol{v}, \boldsymbol{g}, \lambda))$$

step-size

prox: shrinkage operator

 $\phi = \|.\|_1$

Parameters optimization (1/2)

Specifying *c*_z

$$\boldsymbol{z} = prox_{\phi,\lambda c_{\boldsymbol{z}}}(\boldsymbol{z} - \frac{1}{c_{\boldsymbol{z}}} \nabla_{\boldsymbol{z}} L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\theta}, \boldsymbol{v}, \boldsymbol{g}, \lambda))$$

$$c_z \geq \gamma_z L_z \ (\gamma_z > 1), \ c_z \in \mathbb{R}$$

L_z: Lipschitz modulus

A good behavior of PALM is guaranteed when $c_z = \gamma_z L_z$

Parameters optimization (1/2)

Specifying c_z

$$\boldsymbol{z} = prox_{\phi,\lambda c_{\boldsymbol{z}}}(\boldsymbol{z} - \frac{1}{c_{\boldsymbol{z}}} \nabla_{\boldsymbol{z}} L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\theta}, \boldsymbol{v}, \boldsymbol{g}, \lambda))$$

$$c_z \geq \gamma_z L_z \ (\gamma_z > 1), \ c_z \in \mathbb{R}$$

L_z: Lipschitz modulus

A good behavior of PALM is guaranteed when $c_z = \gamma_z L_z$

 L_z is a Lipschitz modulus $\Rightarrow L_z \ge \rho_1 \Rightarrow c_z \ge \gamma_z \rho_1$

Parameters optimization (1/2)

Specifying c_z

$$\boldsymbol{z} = prox_{\phi,\lambda c_{\boldsymbol{z}}}(\boldsymbol{z} - \frac{1}{c_{\boldsymbol{z}}} \nabla_{\boldsymbol{z}} L(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\theta}, \boldsymbol{\nu}, \boldsymbol{g}, \lambda))$$

$$c_z \geq \gamma_z L_z \ (\gamma_z > 1), \ c_z \in \mathbb{R}$$

L_z: Lipschitz modulus

A good behavior of PALM is guaranteed when $c_z = \gamma_z L_z$

 L_z is a Lipschitz modulus $\Rightarrow L_z \ge \rho_1 \Rightarrow c_z \ge \gamma_z \rho_1$

The equal part:

is taken into account in this study

Parameters optimization (2/2)

Optimal computation of λ

Discrepancy principle: λ is laying in the set $\{x: ||x - y||_2^2 \le c\}$ $(c \in \mathbb{R})$ where *c* is a coefficient related to the noise variance

$$x = \frac{\lambda y + g + \rho_2 D_1 \theta}{\lambda + \rho_2} \Rightarrow \lambda = \frac{\|\rho_2 (y - D_1 \theta) - g\|_2}{\sqrt{c}} - \rho_2$$

- Stopping criterion:
 - $\frac{\|\boldsymbol{\theta}_{it} \boldsymbol{\theta}_{it-1}\|_F}{\|\boldsymbol{\theta}_{it}\|_F} < predefined threshold$
 - *Max_{it}* is reached

[11] K. El Houari et al., "Investigating transmembrane current source formulation for solving the ecg inverse problem," in 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop (SAM), pp. 371–375, 2018.

Summary

- I Context
- II EEG and connectivity
- III Method
- IV Results
- V Conclusion

Experimental Data

Simulated data

$$y_1(k) = 3,4y_1(k-1)\left(1-y_1^2(k-1)\right)e^{-y_1^2(k-1)} + w_1(k)$$

$$y_2(k) = 3,4y_2(k-1)\left(1 - y_2^2(k-1)\right)e^{-y_2^2(k-1)} - 0,5y_1^2(k-1) + 0,25\sqrt{2}y_2(k-1) - 0,5y_3(k-3) + w_2(k)$$

$$y_3(k) = 3.4y_3(k-1)\left(1 - y_3^2(k-1)\right)e^{-y_3^2(k-1)} - 0.5y_1^2(k-2) - 0.5y_2(k-2) - 0.25\sqrt{2}y_3(k-2) + w_3(k)$$

where $w_m \sim N(0,1), 1 \le m \le 3$

Simulated Data – Results

 $MSE \pm SD$

	ERR- based method	rERR- based method
y ₁	3.39 <u>+</u> 0.22	2.84 <u>+</u> 0.18
y ₂	6.51 <u>+</u> 0.72	5.81 <u>+</u> 0.37
y ₃	11.50 <u>+</u> 2.34	7.70 ± 0.54

$$MSE^{(m)} = \frac{1}{K} \sum_{k=1}^{K} \left\| \mathbf{y}^{(m)} - \widehat{\mathbf{y}}_{k}^{(m)} \right\|_{2}^{2}, \forall m \in \{1, ..., M\}$$

M: total number of channels K = 1000 Monte-Carlo $\hat{y}_k^{(m)}$ is the estimate of $y^{(m)}$

 $\checkmark~$ Better reconstruction using the rERR-based method

✓ Better stability in terms of prediction

Real signals (1/2)

- Female patient, aged 35 and suffering from temporal lobe epilepsy
- 64-second length iEEG signals using invasive electrodes equipped with 128 channels in the cerebral cortex of the patient
- 256-Hz sampling frequency
- 12 bipolar channels selected according to the clinical expert
- Channels are classified into 3 major groups :
 - Onset '0' group
 - Propagation Internal 'P_I' group
 - Propagation Sink 'P_s' group

phase

Classification rule

Threshold:
$$\phi_{th} = \frac{1}{4M} \sum_{m=1}^{M}$$

M: total number of channels

For every channel:

$$\phi_m = \frac{OD_m - ID_m}{OD_m + ID_m}$$

 $|\phi_m|$

m=1

OD: Outward Degree ID: Inward Degree

$$OD_{m} = \sum_{i=1}^{M} \boldsymbol{\Theta}_{m,i}, \qquad ID_{m} = \sum_{i=1}^{M} \boldsymbol{\Theta}_{i,m} \qquad \boldsymbol{\Theta} = [\boldsymbol{\theta}_{1}, \dots, \boldsymbol{\theta}_{M}] \in \mathbb{R}^{M \times M}$$
Classification rule for \boldsymbol{y}_{m} : $\boldsymbol{y}_{m} \in \begin{cases} 0, & if \phi_{m} \ge \phi_{th} \\ P_{I}, & if - \phi_{th} \le \phi_{m} \le \phi_{th} \\ P_{S}, & if \phi_{m} \le -\phi_{th} \end{cases}$

Expert's classification

Expert	Classification	Expert	Classification
Bp1-Bp2	0	Cp4-Cp5	P _I
Cp1-Cp2	0	Ap6-Ap7	P _I
Ap2-Ap3	0	Bp6-Bp7	P _I
Pp1-Pp2	0	Fp1-Fp2	Ps
Pp4-Pp5	0	Dp1-Dp2	Ps
Рр8-Рр9	0	Tp1-Tp2	Ps

Expert	Classification	Expert	Classification
Bp1-Bp2	0	Cp4-Cp5	P _I
Cp1-Cp2	0	Ap6-Ap7	P _I
Ap2-Ap3	0	Bp6-Bp7	P _I
Pp1-Pp2	0	Fp1-Fp2	Ps
Pp4-Pp5	0	Dp1-Dp2	P _S
Рр8-Рр9	0	Tp1-Tp2	Ps

ERR-based method	Classification	ERR-based method	Classification	rERR-based method	Classification	rERR-based method	Classification
Bp1-Bp2	P _S	Ср4-Ср5	Ps	Bp1-Bp2	Ps	Ср4-Ср5	P _S
Cp1-Cp2	P _I	Ap6-Ap7	0	Cp1-Cp2	0	Ap6-Ap7	0
Ap2-Ap3	0	Bp6-Bp7	0	Ap2-Ap3	0	Bp6-Bp7	0
Pp1-Pp2	P _I	Fp1-Fp2	P _S	Pp1-Pp2	0	Fp1-Fp2	P _s
Pp4-Pp5	0	Dp1-Dp2	P _s	Pp4-Pp5	0	Dp1-Dp2	P _s
Pp8-Pp9	P _I	Tp1-Tp2	Ps	Pp8-Pp9	Ps	Tp1-Tp2	Ps

	Properly classified
	Fairly classified
ſ	Misclassified

Expert	Classification	Expert	Classification
Bp1-Bp2	0	Cp4-Cp5	P _I
Cp1-Cp2	0	Ap6-Ap7	P _I
Ap2-Ap3	0	Bp6-Bp7	P _I
Pp1-Pp2	0	Fp1-Fp2	Ps
Pp4-Pp5	0	Dp1-Dp2	Ps
Рр8-Рр9	0	Tp1-Tp2	Ps

ERR-based method	Classification	ERR-based method	Classification
Bp1-Bp2	P _S	Ср4-Ср5	P _S
Cp1-Cp2	P _I	Ap6-Ap7	0
Ap2-Ap3	0	Bp6-Bp7	0
Pp1-Pp2	P _I	Fp1-Fp2	Ps
Рр4-Рр5	0	Dp1-Dp2	P _S
Рр8-Рр9	P _I	Tp1-Tp2	P _s

rERR-based method	Classification	rERR-based method	Classification
Bp1-Bp2	Ps	Ср4-Ср5	Ps
Cp1-Cp2	0	Ap6-Ap7	0
Ap2-Ap3	0	Bp6-Bp7	0
Pp1-Pp2	0	Fp1-Fp2	Ps
Pp4-Pp5	0	Dp1-Dp2	Ps
Рр8-Рр9	Ps	Tp1-Tp2	P _s

	Properly classified
	Fairly classified
Ì	Misclassified

Expert	Classification	Expert	Classification
Bp1-Bp2	0	Cp4-Cp5	P _I
Cp1-Cp2	0	Ap6-Ap7	P _I
Ap2-Ap3	0	Bp6-Bp7	P _I
Pp1-Pp2	0	Fp1-Fp2	Ps
Pp4-Pp5	0	Dp1-Dp2	Ps
Рр8-Рр9	0	Tp1-Tp2	Ps

In other seizures, and for the same patient:

- Ap6-Ap7 was classified in the O group
- Pp8–Pp9 was classified in the P_I/ P_s groups

ERR-based method	Classification	ERR-based method	Classification	rERR-based method	Classification	rERR-based method	Classification
Bp1-Bp2	P _S	Ср4-Ср5	P _S	Bp1-Bp2	Ps	Ср4-Ср5	Ps
Cp1-Cp2	P _I	Ар6-Ар7	0	Cp1-Cp2	0	Арб-Ар7	0
Ap2-Ap3	0	Bp6-Bp7	0	Ap2-Ap3	0	Bp6-Bp7	0
Pp1-Pp2	P _I	Fp1-Fp2	Ps	Pp1-Pp2	0	Fp1-Fp2	Ps
Pp4-Pp5	0	Dp1-Dp2	Ps	Pp4-Pp5	0	Dp1-Dp2	Ps
Рр8-Рр9	P _I	Tp1-Tp2	P _S	Рр8-Рр9	Ps	Tp1-Tp2	Ps

Expert

Classification

Classification

	Properly classified
	Fairly classified
ſ	Misclassified

-		-	
Bp1-Bp2	0	Cp4-Cp5	P _I
Cp1-Cp2	0	Ap6-Ap7	P _I
Ap2-Ap3	0	Bp6-Bp7	P _I
Pp1-Pp2	0	Fp1-Fp2	Ps
Pp4-Pp5	0	Dp1-Dp2	P _S
Pp8-Pp9	0	Tp1-Tp2	P _S

ERR-based method	Classification	ERR-based method	Classification	rEl
Bp1-Bp2	Ps	Ср4-Ср5	P _S	В
Cp1-Cp2	P _I	Ap6-Ap7	0	C
Ap2-Ap3	0	Bp6-Bp7	0	A
Pp1-Pp2	P _I	Fp1-Fp2	P _S	Р
Pp4-Pp5	0	Dp1-Dp2	P _S	Р
Рр8-Рр9	P _I	Tp1-Tp2	P _S	Р

Expert

rERR-based method	Classification	rERR-based method	Classification
Bp1-Bp2	P _S	Ср4-Ср5	P _S
Cp1-Cp2	0	Ap6-Ap7	0
Ap2-Ap3	0	Bp6-Bp7	0
Pp1-Pp2	0	Fp1-Fp2	P _S
Рр4-Рр5	0	Dp1-Dp2	P _S
Рр8-Рр9	P _S	Tp1-Tp2	P _S

	Properly classified				
	Fairly classified				
ſ	Misclassified				

Expert	Classification	Expert	Classification
Bp1-Bp2	0	Cp4-Cp5	P _I
Cp1-Cp2	0	Ap6-Ap7	P _I
Ap2-Ap3	0	Bp6-Bp7	P _I
Pp1-Pp2	0	Fp1-Fp2	Ps
Pp4-Pp5	0	Dp1-Dp2	Ps
Pp8-Pp9	0	Tp1-Tp2	P _S

ERR-based method	Classification	ERR-based method	Classification	rERR-based method	Classification	rERR-based method
Bp1-Bp2	Ps	Ср4-Ср5	Ps	Bp1-Bp2	P _S	Ср4-Ср5
Ср1-Ср2	P _I	Ap6-Ap7	0	Cp1-Cp2	0	Ap6-Ap7
Ap2-Ap3	0	Bp6-Bp7	0	Ap2-Ap3	0	Bp6-Bp7
Pp1-Pp2	P _I	Fp1-Fp2	Ps	Pp1-Pp2	0	Fp1-Fp2
Рр4-Рр5	0	Dp1-Dp2	Ps	Pp4-Pp5	0	Dp1-Dp2
Рр8-Рр9	P _I	Tp1-Tp2	Ps	Pp8-Pp9	P _S	Tp1-Tp2

Classification

 P_{S} 0

0

 P_{S}

 P_{S}

 P_{S}

Summary

- I Context
- II EEG and connectivity
- III Method
- IV Results
- V Conclusion

Conclusion

- Proposal of a refined ERR-based approach based on a sparsity representation of the coefficient vector for nonlinear system identification in the context of epilepsy
- Performance validated on simulated and real iEEG signals
- Ongoing work: more robust and optimized dictionary-based nonlinear identification system

Thank you

