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His current research focuses on statistical signal processing and importing methods from

Telecommunication Engineering and Computer Science to model and analyze systems more

efficiently and with greater information power.
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Objectives

• a few fundamental claims about computing machines with finite memory

• a new look at the Fermat last theorem (FLT) as a side effect

• a work in progress, the proofs of claims not provided, but identified a number
of research problems to explore

Outline

• Number Representations

• Integer Arithmetic

• Modular Arithmetic and Dual Modulo Operator

• Fermat Last Theorem and Fermat Metric
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Number Representations

Number systems

• abstract mathematical objects (sets, groups, rings, fields, ...)

→ algebra, algebraic laws

• or carry semantic meaning of quantity

→ arithmetic operations, computing

Practical computing machines

• must represent numbers effectively within a finite memory

→ CPU registers, RAM

• numbers (i.e. variables) are pre-allocated finite space in memory

→ fixed and floating point representations with single and double precision

→ IEEE 754 standard

• unlimited precision is possible, but inefficient

→ GNU MP library (used by Mathematica and Maple)

Claim 1

Any practical computing only involves a finite set of computable numbers, N =

{N1 < N2 < . . .}. The differences, mini, j |Ni−N j| = ǫ0, define the precision.
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Number Representations (cont.)

String representation

N =

imax∑

i=imin

Di×Bi ↔ DimaxDimax−1 · · ·D1D0 ...D−1 · · ·Dimin

• practical, human-readable representation

→ automata (e.g. Turing machine) and language theory

• decimal point split the string into integral and fractional parts

→ it is customary to insert decimal point between digits D0 and D−1

→ different bases, B, are mathematically fully equivalent

→ but they are not equivalent in operations with strings

Internal representation

• in-memory, representation as B = 28×#bytes−1 for efficiency reasons

Claim 2

Decimal point has purely syntactical meaning to align numbers in arithmetic

operations. Consequently, all numbers on computing machines can be

considered to be integers.
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Integer Arithmetic

Finite set of integers

• overflow and underflow problems

• approximation of real-valued arithmetic and models

→ truncation, rounding

• aligning numbers in arithmetic operations

→ unified placement of decimal point

→ padding with zeros (from left and right)

Comparing numbers

• 0.99999 · · ·9 vs. 1.00000 · · ·0 problem

• tolerating the difference in scale induces periodicity

→ left-end sub-string

• tolerating the difference in precision induces quantization

→ right-end sub-string

• adjusting scale and/or precision can be done by modulo operator

→ assuming finite-length strings with zero-paddings
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Modular Arithmetic

Canonical modulo operator

• for b ∈ Z or b ∈ R

(a mod b) = (|a| mod b) ∈ {0,1, . . . ,b−1}

• congruence vs. equality

a1 ≡ a2 ( mod b), a1 = a2

→ reflexivity, symmetry, and transitivity

→ equality implies equivalence

Dual-modulo operator

• for m1 = BL−L1 and m2 = BL2, define

Ni Mod(m1,m2) = (Ni mod m1)− (Ni mod m2)

= 0 · · ·0
︸︷︷︸

L1

DL−L1−1 · · ·DL2+1DL2
0 · · ·0
︸︷︷︸

L2

• similar properties as canonical modulo operator
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Modular Arithmetic (cont.)

Properties of dual-modulo operator

a Mod(0,m2) = a− (a mod m2)

a Mod(m1,1) = a mod m1

a Mod(m1,m1) = 0

a+b ≡ a Mod(m1,m2)+b Mod(m1,m2) (Mod(m1,m2))

a−b ≡ a Mod(m1,m2)−b Mod(m1,m2) (Mod(m1,m2))

a ·b ≡ a Mod(m1,m2) ·b Mod(m1,m2) (Mod(m1,m2))

a/b . a Mod(m1,m2)/b Mod(m1,m2) (Mod(m1,m2))

Chinese reminder-theorem

• if m11 and m12 are co-prime and, for some integers Ni and m2

Ni ≡ a1 (Mod(m11,m2)) and Ni ≡ a2 (Mod(m12,m2))

• then there is a unique integer a such that

Ni ≡ a (Mod(m11m12,m2))



Pavel Loskot, ZJU-UIUC©2022 8/12

Case Study: FLT

Original formulation

• there are no integers a,b,c,∈ N, such that an
+bn
= cn, if n > 2

• long and mathematically very evolved proof published recently

FLT re-formulation #1

• for every n ∈ N, there exist infinitely many (a,b,c,m1,m2) ∈ N5, such that

an
+bn ≡ cn (Mod(m1,m2))

• example assuming numbers with l = l1+ l2 = 9 digits and integers ≤ 100

B = 8 B = 10

n = 3 n = 4 n = 3 n = 4

(l1, l2) (3,6) (4,5) (3,6) (4,5) (3,6) (4,5) (3,6) (4,5)

nl 69627 22278 5505 2318 1284 44532 10666 3622

nr 212 644 730 2076 198 207 230 596
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Case Study: FLT (cont.)

Define integers Ñx

• given a constant x ∈ R, let

Ñx = {x, x+1, x+2, . . .}

• satisfy Peano axioms, except 0→ x

→ N0 are natural numbers

• however, (a+b) < Ñx when a,b ∈ Ñx

→ still a good starting point for developing this further

FLT re-formulation #2

• for every n ∈ N, there is always a solution (a,b,c) ∈ Ñ3
x, such that

an
+bn
= cn

• thus, (a− x), (b− x), and (c− x) are natural integers
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Case Study: FLT (cont.)

FLT re-formulation #3

• for every n ∈ N, there exists integer m ≥ n, and a set of natural integers
{a1,a2, . . . ,am}∪ {b}, such that

an
1+an

2+ · · ·+an
m = bn

• examples:

32
+42
= 52 (m = n = 2)

33
+43
+53
= 63 (m = n = 3)

24
+24
+34
+44
+44
= 54 (m = n+1 = 5)

195
+435

+465
+475

+675
= 725 (m = n = 5)
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Fermat Metric

Observations

• sequence an
+bn becomes sparse very rapidly with increasing n

• the best approximation of (an
+bn) is by cn where c = ⌊(an

+bn)1/n⌉

Definition

Fn(a,b) = an
+bn−⌊(an

+bn)1/n
⌉n

• F1(a,b) = 0

• Fermat distance
Dn(a,b) = |Fn(a,b)|
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Conclusion

Claim 3

Any computing system utilizing finite number representations can be

represented by a system of Diophantine equations.

Key points

• large gap between real-valued models and actual computer implementations

• computing models can/should exploit congruent equivalences

• FLT can be modified to allow the solutions to exist

• integers can be defined as Ñx

• Fermat distance allows clustering natural integers as well as real numbers

Future work

• arithmetic involving integers, r1n+ r2, where n ∈ N and r1,r2 ∈ R

• obtaining partial proofs for some number theory problems

→ incomplete proofs which nevertheless have clear information value

• implications of integer arithmetic on constructing computing machines

→ including Turing machine

• applications of Fermat metric/distance, integers Ñx, etc.
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