

Comparison of Speech Features for Connected Number Speech Recognition in Indian Vernacular Languages

Mayurakshi Mukherji¹, Shreyas Kulkarni¹,

Vivek Kumar¹, Senthil Raja G¹,

Thiruvengadam Samon¹, Kingshuk Banerjee¹, Yuichi Nonaka¹

¹ Research and Development Centre, Hitachi India Private Limited Contact Email: senthil.raja@hitachi.co.in

Presenter Introduction:

Shreyas Kulkarni

shreyas.kulkarni@hitachi.co.in

Qualification:

- MTech, Systems and Control, IIT Bombay, India (2019)
- Research Engineer at Hitachi India Pvt Limited

Research Areas of Interest:

- Deep Learning for Speech Recognition
- Control for Robotic Systems
- Design and Control for Electrical Drives

Agenda:

- 1. Connected Number Speech Recognition
- 2. Speech Data Collection
- 3. Automatic Speech Recognition
- 4. Speech Feature Extraction
- 5. Acoustic Model Training
- 6. Results
- 7. Discussion

1. Connected Number Speech Recognition

HITACHI Inspire the Next

The objective is to democratize access to financial services using voice-aided applications.

Hitachi ASR Platform

- Build domain specific and highly targeted applications with higher accuracy than general purpose Automatic Speech Recognition (ASR) systems.
- Support multiple Indian vernacular languages hence it can help bring rural empowerment.

Research activity:

Compare and analyze the performance of ASR models trained with different speech features for Connected Number Recognition across Indian vernacular languages

2. Speech Data Collection- Connected Numbers

Speech data with diverse demography is collected for building regionally inclusive ASR systems.

Fig. Map of India with native languages under investigation

Methodology:

Face to Face survey through purposive sampling

Target Respondent Profile:

- Gender: Both male and female
- Age group: 18 to 50 years
- Must speak native language
- Must be willing to allow to recording their voice

Sample size:

- Number of people = 1000 per language
- City (30%) and Rural (70%)
- Number of utterances per person ~ 50

Languages:

Bengali, Hindi, Tamil, Marathi, Kannada, Malayalam, Telugu, Odia, Assamese, Punjabi, Gujrati.

Speech Data:

Randomly generated Connected numbers between 0 to 100,000 in native language Ex. Hindi: "एक हज़ार चार सौ तीस" (One Thousand Four hundred thirty)

3. Automatic Speech Recognition- Workflow

HITACHI Inspire the Next

ASR workflow makes use of ILSL 2.0 based transliteration scheme which is critical for model comparative study.

- To compare the performances of speech recognition models in different languages, all languages' phonemes should be represented on identical platform. based on which the pronunciation dictionaries can be built.
- Generally, IPA standard is used but we used ILSL 2.0, a grapheme to phoneme map, specifically targeted towards creating phoneme dictionaries by introducing common representation for graphemes across multiple Indian languages [3].

Table. Sample of ILSL 2.0 standards across multiple Indian Languages [3]

ſ	ILSL	Bengali	Hindi	Marathi	Kannada	Tamil
	аа	আ	आ	आ	ಆ	ஆ
ſ	kh	শ	ख	ख		க
Ī	dx	स	ड	ड	ದ	L٧
ſ	У	ম	य	य	ಯ	ш
	е	ฎ	ए	ੲ	ධ	ត

4. Speech Feature Extraction

Four ASR models (per language) are trained using four combinations of speech features: MFCC, MFCC+Pitch, PLP, and PLP+Pitch

- To built automatic speech recognition systems, we should model vocal tract corresponding to speech utterances. The speech utterances can be broken up into fundamental sounds in a language.
- The MFCC and PLP features capture the significant frequencies (formant frequencies), corresponding to fundamental sounds in a language. The pitch features are important for tonal languages like Mandarin.

5. Acoustic Model Training

Identical training conditions are maintained for performing all the model trainings.

Data	Distribution
Per Language:	train set = ~60,000 samples ~ 55 hr 70%
80% connected numbers	dev set = ~15,000 samples ~ 12 hr 20%
20% general sentences	eval set = ~9,000 sample ~ 8 hr 10%

Traii	Training Stage Model Training Paramete		
	Monophone Training	num_iters = 40	
	-	num_iters = 35	
ing	Triphone training (tri-1)	numleaves = 2750	
GMM-HMM training		totgauss = 50000	
M		num_iters = 35	
μ	Triphone + LDA + MLLT training (tri-2)	numleaves = 2750	
- WV		totgauss = 50000	
0 U	Triphone + LDA + MLLT + SAT training	num_iters = 35	
	(tri-3)	numleaves = 2750	
		totgauss = 50000	
		epochs = 6	
	N L STM training	hidden layers = 13	
	N-LSTM training	Initial learning rate = 0.0001	
		Final learning rate = 0.00001	

6. Results

MFCC+Pitch feature combination has best results on average across multiple languages.

	% Sentence Error Rate					
Language	MFCC	MFCC+Pitch	PLP	PLP+Pitch		
Bengali	20.61	21.53	21.63	21.96		
Hindi	14.55	10.6	16.59	18.33		
Tamil	27.42	25.42	27.4	27.65		
Kannada	26.42	25.52	27.01	25.78		
Marathi	12.01	11.56	13.37	12.02		
Average	20.2	18.93	21.2	21.12		

- Among four speech feature combinations, tested over five Indian languages, MFCC+Pitch shows the best result with a 0.68% WER improvement and 1.27% SER improvement over MFCC on average.
- MFCC+Pitch shows the best improvement in case of Hindi, where SER is reduced by 4%.

7. Discussion

HITACHI Inspire the Next

This study provides Multilingual ASR tuning heuristics and language specific insights.

- The comparative results lead up to heuristics for the tuning of a multilingual ASR model to meet different recognition criteria depending on the part of the country where the model is to be deployed.
- Therefore, the model should ultimately show higher accuracy for the regionspecific language, while also supporting multiple other languages.
- The Marathi and Hindi languages belong to Indo-Aryan language family, and are phonetically similar, use same script. Moreover, the ASR models show similar and relatively better performance.
- Bengali language has some elements in the grapheme-to-phoneme map which exhibit many-to-one mapping, leading to relatively poorer recognition performance.
- Tamil and Kannada languages belong to the same language family, and show similar and relatively poorer performance.

References

- [1] J. M. R. Sánchez, M. Bereau, and J. R. C. de Lara, "Feature selection for automatic speech recognition in noisy Scenarios," In 2nd International Conference of Information Processing, vol. 40, pp. 51-71, Dec. 2019.
- [2] P. Ghahremani et al., "A pitch extraction algorithm tuned for automatic speech recognition," 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2494-2498, 2014
- [3] Arun Baby, Nishanthi N.L., Anju Leela Thomas, and Hema A. Murthy, "A Unified Parser for Developing Indian Language Text to Speech Synthesizers", Springer International Publishing Switzerland, pp. 514–521, 2016
- [4] D. Namrata, "Feature extraction methods LPC, PLP and MFCC in speech recognition", International Journal For Advance Research in Engineering And Technology (ISSN 2320-6802), vol. 1, pp. 1-6, 2013
- [5] L. Xie and Z. -q. Liu, "A comparative study of audio features for audio-to-visual conversion in Mpeg-4 compliant facial animation," 2006 International Conference on Machine Learning and Cybernetics, pp. 4359-4364, 2006, doi: 10.1109/ICMLC.2006.259085.
- [6] M. Wu, D. Wang, and G. J. Brown, "A multi-pitch tracking algorithm for noisy speech," 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. I-369-I-372, 2002, doi: 10.1109/ICASSP.2002.5743731.
- [7] K. Kasi and S. A. Zahorian, "Yet another algorithm for pitch tracking," 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. I-361-I-364, 2002, doi: 10.1109/ICASSP.2002.5743729.
- [8] X. Lei. "Modeling lexical tones for mandarin large vocabulary continuous speech recognition.", Ph.D. dissertation, University of Washington, 2006.
- [9] F. He et al., 'Open-source multi-speaker speech corpora for building Gujarati, Kannada, Malayalam, Marathi, Tamil and Telugu Speech synthesis systems', Proc. The 12th Language Resources and Evaluation Conference (LREC), pp. 6494–6503, 2020.
- [10] K. S. Bhogale et al., 'Effectiveness of mining audio and text pairs from public data for improving ASR systems for low-resource languages'. arXiv, 2022.
- [11] G. Chen, et al., "Data augmentation for children's speech recognition", The "Ethiopian" System For The SLT 2021 Children Speech Recognition Challenge, arXiv preprint arXiv:2011.04547, 2020.
- [12] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Sonderegger, 'Montreal Forced Aligner: Trainable Text-Speech Alignment Using Kaldi', Proc. Interspeech 2017, pp. 498–502, 2017.
- [13] "IITM Hindi Speech Corpus: a corpus of native Hindi Speech Corpus" Speech signal processing lab, IIT Madras, 2020.

Thank you !

धन्यवाद | நன்றி | धन्यवाप | ಧನ್ಯವಾದ | धन्यवाद