Universidad Politécnica de Madrid

SIGNAL 2023

Supervised Spatial Divide-and-Conquer Applied to Fish Counting

National Project : Aquaculture 4.0: Application of vision and artificial intelligence technologies to improve the production process

Presenter:
Gianna Arencibia Castellanos, gianna.arencibia@upm.es

Counting objects in images.

- Frequent task in industrial and scientific areas
- In aquaculture is applied to know number of fishes in a image

Biomass estimation

- Optimize the amount of feed
- Plan later stage of farming
- Make decisions at the right times

Aquaculture 4.0

- The application of ML algorithms to images of fish larval tanks can enable the implementation of low-cost, accurate, and reliable biomass estimation systems.
- A system that allows obtaining an estimated number of turbot larvae present in RGB images based on a deep learning algorithm.

Artificial vision algorithm.

Approaches to count the number of objects in an image

Detection

- Position of the objects
- Problems when the objects are overlapping

Regression

- Supervised machine learning techniques
- Requires large datasets to be trained

Density estimation

- Distribution of the objects
- Adaptable to objects with different sizes

Dataset. Experimental scenario.

- RGB camera, Reolink
- Located with the lens axis perpendicular to the water

Dataset. Images.

- 156 images of turbot larval tanks
- RGB images, 2560x1920 pixels resolution
- Different densities of fishes

Dataset. Annotation of images.

- Initial segmentation by thresholding
- Manually revised to generate the ground-truth

Dataset. Train and test sets

- 124 images (80%) for training and 32 images (20\%) for testing

Neural Network. SS-DCNet

- Supervised Spatial Divide-and-Conquer for Object Counting model.
- Learns from a closed set and generalizes to scenarios with open sets.
- Generate multi-resolution feature maps in subimages of 64×64 pixels.
- Estimate the density map related to sub-image selected.
- Density map is used to calculate the local count.

Relationship between σ and density map

- A value of 12 was used for σ to create the density maps $\mathrm{MAE}=9.66 \quad \mathrm{RMSE}=18.20 \quad \mathrm{MAPE}=3.48 \%$

Selection of $C_{\max }$ value

- $C_{\text {max }}=5$ corresponding to the 95 th percentile of the objects distribution in 64×64 pixels

MAE $=9.66 \quad$ RMSE $=18.20 \quad$ MAPE $=3.48 \%$

Generalization capability / ability

- Re-trained with images that had a low density (less than 350) and tested with images that had a high density (350-898).
- 129 and 27 images were used for training and testing, respectively

Conclusions

- Mean error lower than 3.5\%
- Adaptation of the model to count other fish species, not necessary to use large datasets for training
- Generalization ability
- Adjusting the value of σ for each labeled point based on the morphological features

Universidad Politécnica de Madrid

SIGNAL 2023

Supervised Spatial Divide-and-Conquer Applied to Fish Counting

Thank you!!

Gianna Arencibia Castellanos, gianna.arencibia@upm.es

