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• In speaker verification, Time Delay Neural Networks (TDNNs) and Residual Networks (ResNets) are 
currently achieving cutting-edge results.

• These architectures have very different structural characteristics, and development of hybrid 
networks appears to be a promising path forward.

• In this study, inspired by the combination of CNN blocks and multi-scale architectures we present a 
Residual-based CNN TDNN (RCT) system and evaluate the performance of integrating different 
residual blocks into a TDNN-based structure.
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Introduction



• Two types of TDNN-based speaker embedding models, ECAPA-TDNN [1] and ECAPA CNN-TDNN 
[2], are considered as reliable baselines to evaluate the performance of our suggested 
architectures.

• Experiment with the convolutional stem, including various bottleneck residual blocks such as 
Res2Net [3], Res2NeXt [4], standard ResNet [5], Improved ResNet [6] and ResTCN [7].

• Our proposed architectures:

● Extended ECAPA-TDNN

● RCT-Net 
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Methods
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System Architectures 

RCT-Net

• 2D convolutional stem for the ECAPA-TDNN 
speaker verification model

• Incorporating frequency translational invariance in 
the initial layers of the network

Extended ECAPA-TDNN

• Evaluate the effectiveness of the baseline model 
using Various CNN dimensions including scale 
and cardinality
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The structures of bottleneck residual blocks in different architectures. Standard residual blocks in (a) ResNet [5], (b) Improved ResNet [6], and (c)
Res-TCN [8]. Multi-scale residual blocks in (d) Res2Net [3] and (e) ResNeXt. [4]

Residual blocks



Dataset

• Evaluate on development part of VoxCeleb2 dataset with 5994 speakers as training data.

•  MUSAN and RIR datasets to generate extra samples for data augmentation.

•  VoxCeleb1-O test set contains 4,708 utterances from 40 speakers as validation set.

Training

• The input features are 80-dimensional MFCCs extracted from a window length of 25 ms with a 
frame shift of 10 ms.

• Standard Adam optimizer with cyclical learning rates ranging between 1e-8 and 1e-3.

• AAM-softmax with a margin of 0.2 and softmax prescaling of 30 for 4 cycles.
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Experimental Setup
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Results
● Almost all RCT-based combinations (~91%) lead to an improvement over standard ECAPA-TDNN.
● All proposed models with potential to perform better than their corresponding baselines have fewer 

parameters.
● The best model using Res2NeXt−8s ×8g × 128c surpasses both ECAPA-TDNN and ECAPA CNN-TDNN 

baselines by 14.6% and 8.7%, respectively. Remarkably, Res2NeXt−6s × 8g × 1008c even outperforms 
the baseline, ResNet-128c, with only 51% of the number of parameters in the model.
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Results

Variations in CNN stems representation:
● 2D convolutional stems are more optimally suited for the representation of speaker 

embedding compared to 1D representations.
● 87.5% of any ECAPA-TDNN extension included in the experiments are above the 

threshold of 1%, 91% of RCT-Net models are below it.
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Results
Dimension variations:

● Findings of prior benchmark experiments [3] imply that scaling up is more efficient than other 
dimensions.

● This finding can be confirmed, as for most system configurations s=4 results in inferior 
performance, compared to higher values.

● On this level, the overall performance also depends on the remaining parameters c and g.
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Results

Multi-scale residual blocks:

ECAPA-TDNN based experiments ECAPA CNN-TDNN based experiments



Results

ECAPA-TDNN based experiments:
● For 1D representations the introduction of multi-scale 

blocks in ResNeXt alone does not lead to any 
improvement.

● When combining it into the Res2NeXt model, the 
performance improves by 8.7%.

ECAPA CNN-TDNN based experiments:
● Introduction of multi-scale blocks clearly improves the 

overall performance.
● We can hypothesize that the multi-scale feature setup 

greatly benefits from the 2D convolution processing in the 
entrance of the stem.

ECAPA-TDNN based experiments

ECAPA CNN-TDNN based experiments



• Based on our results, integrating 2D Res2NeXt with TDNN is the best combination of two strong 
structures of TDNN and residual blocks.

• The joint benefits of a parallel stacking layer of ResNeXt rather than sequential layers of standard 
ResNet architectures, multi-scaling features in Res2Net, and expanding the range of receptive fields 
show the potential to extract more invariant feature representations in a joint Res2NeXt architecture.
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Discussions



• This study adapt the frame-level layer architecture that integrates multiple ideas motivated by the 
convolutional block and multi-scale architectures.

• The best model using Res2NeXt improves current state-of-the-art by 14.6% relative on VoxCeleb1 
test set.
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Conclusion



• Investigate hybrid architectures in more details and propose structures to reduce computational 
complexity

• Speech-level interpretation of the proposed TDNN-based architectures
● Visualizing the acoustic concepts using Explainable AI methods
● Generalizing our findings with additional datasets and evaluation metrics
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Future Works
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