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Workgroup

 Main focus on Glass-Coated Amorphous Microwires:

• Fabrication.

• Treatments.

• Experimentation.

 Applications:

• Security devices.

• Computing.

• Stress monitoring.

• Geolocation.
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Introduction to Glass-Coated

Microwires
 Characteristics

• Metal core enveloped by glass coating, μm radius.

• Amorphous alloy, no structural ordering.

• Magnetic structure depending on core-coating
interaction.

 Magnetic Properties:

• Bi-stability.

• Ultra fast switching.

• High magnetic softness.

• Giant Magneto-Impedance (GMI) effect.

• Tuning of previous properties by annealing.



Experimental
Fabrication and parameters

Fabrication: 

Taylor-Ulitovsky Technique. [1]
Sample 

name
Composition

Inner 

diameter 

d (µm)

Total 

Diameter 

D (µm)

d/D

“Thick”
Fe71.8B13.27Si11.02

Nb2.99Ni0.92

47.9 53.2 0.9

“Thin”
Fe74.87B9.06Si11.99

C4.08

15.2 17.2 0.88

“Thick”

“Thin”

Hair



Experimental
Characterization

 Hysteresis:

• Fluxmetric method at 114 Hz.

• 13 cm inductive coil, 2 cm pickup 

and compensator coils.

 Domain Wall (DW) dynamics:

• Modified Sixtus-Tonks method. [2]

 Giant Magneto-Impedance:

• Network vector analyzer. [3]

• GMI efficiency [4]

∆𝑍

𝑍
=
𝑍 𝐻 − 𝑍(𝐻𝑚𝑎𝑥)

𝑍(𝐻𝑚𝑎𝑥)

Annealing

 24 cm samples.

 “Conventional” furnace

annealing:

• At 300, 400 and 500 ˚C.

• For 1 and 3 hours.

 Current annealing [5]:

• “Thick” samples: 40 mA for 20 

minutes.

• “Thin” samples: 15 mA for 3min.



Results
Magnetic hysteresis

 Magnetic bi-stability.

 Thicker microwire -> bigger HC

 Current annealing further reduces HC
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 “Thick” HC reduction with T -> stress relaxation

 “Thin” Hc rises with T -> crystallization



Results
Domain Wall (DW) dynamics

 Thinner microwire -> faster DWs.

 Conventional annealing

enhances velocity and movility.

 Current annealing shows small, 

even negative results.

 Combination of annealings:

 “Thick” -> almost no effect

 “Thin” -> further enhancement

of DW velocity
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Results
Giant Magneto-Impedance (GMI)

 Thicker microwire -> Higher
GMI values.

 Annealing enhances
values, but excessive
annealing is detrimental.

 “Thin” microwires are more 
sensitive to annealing.
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Results
Giant Magneto-Impedance (GMI)

 Annealing shifts frequency for
max GMI effect.

 Excessive anneling reduces 
GMI, but current annealing
can recover efficiency.
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 Frequency shift almost not
pressent.

 Lower resistance to and 
recovery from excessive
annealing.



Conclusions

 Thinner microwires are magnetically softer and present higher DW velocity
and movility, but show lower GMI efficiency and resistance to long exposure
to high temperatures.

• Better suited for computation related and lower scale technologies.

 Thicker microwires posses higher GMI effect, with the posibilty of recovering
efficiency losses from heat exposure by aplying current annealing.

• Better suited for magnetic and stress sensing and composite designs.

 Conventional furnace annealing at 300 ˚C for 1 hour yields the best GMI 
performance enhancement for both types of microwires. Tuning of other
properties require might require different temperatures and times.

 Aplication of current annealing after conventional annealing seems to be a 
viable option to further tune specific properties of microwires for applications
outside GMI related ones. 
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