Semantically Augmented Documents for the Use in Higher Education Institutions
Analyzing the Current State in the Digital Transformation of HEI

Prof. (FH) Karsten Böhm, NextTech Congress / 26th September 2023
The Seventeenth International Conference on Advances in Semantic Processing – SEMAPRO
Agenda – Semantic Model in the Digital Transformation (of HEI)

- Introduction & problem statement
- Analysis of a specific use-case in a HEI
- Implementation approach and results
- Conclusion and Outlook
Introduction: The Defining documents of Study Programs in HEI

- Analysis of (Austrian) study programs and education processes showed:
 - A number of important specification documents with varying lifetimes and dependencies
 - Important information is document based and often unconnected, sometimes inconsistent (over time)
 - Little systematic structure or IT-system support and low level of Semantic expressiveness
- Noteworthy: structures are designed/build manually ("pre-built")
Introduction: The advent of new Semantic Models for Certification of Competences & Learning Outcomes

- The [Educational] Verifiable Credentials Model (W3C)
 - Focusses on building a data model for all sorts of credentials
 - Secure form of issuing and verifying credentials among different stakeholders (issuers, holders, ...)
 - The Educational VCM focusses on the domain specific needs of (H)EI and “...focuses more on content, than on the envelope”

- The European Learning Model (European Commission)
 - Tries to build a domain model for the European (H)EI sector with the intention of harmonization and transparency educational data exchange
 - Recently being unifies into one model with different layers
 - Layer 01/02 are the most interesting and important for the initial implementation
Question for this research

- Based on the current situation and the demands of a digital transformation of the HEI sector this research was addressing the following questions:

- In a more narrow sense (focusing on HEI):
 - How can the new models be used in the existing use-cases (ToR DS)?
 - How do the new models map to the existing structures, what works and what is missing?

- In a wider sense (focusing on Semantic Technologies in general):
 - Given that viable models exist, how can we get [non-expert] users to adopt it?
 - How can the new models being used in an already existing ICT infrastructure?
Analysis Results of the Current Situation

- Scope: single Austrian university, workshop in a larger European project reflecting the situation in a broader scope
- Wide use of ToR/DS document, use cases between HEI (RPL, Learning Agreements, Certification exchange) and between HEI and companies (JTA and mapping of degrees on job offerings)
- Distributed information DS \rightarrow ToR \rightarrow external information (Website)
- Potential for more: current focus on certification and the headline subjects more detailed information is lacking
Analysis showed that a mapping of the defended attributes of the ToR/DS document class is possible

ELM is the more important model compared to EVC when expressing content related aspects

Still the model is only at the „surface level“ considering the expressiveness of the learnings (e.g., using the class LearningAchievement from ELM)

The models could serve as a way to create machine readable documents for use-cases like Recognition of Prior Learning

The models have a much larger potential in representing more detailed knowledge on achieved competences

TABLE II. ATTRIBUTES OF A TOR DOCUMENT (LEFT COLUMN) AND APPROPRIATE SEMANTIC CLASSES AND PROPERTIES (RIGHT COLUMN) ABBREVIATIONS: EVC – EDUCATIONAL VERIFIABLE CREDENTIAL, VC – VERIFIABLE CREDENTIAL, ELM – EUROPEAN LEARNING MODEL

<table>
<thead>
<tr>
<th>Course Title</th>
<th>ELM: Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>ELM: Identifier</td>
</tr>
<tr>
<td>Language of lecture</td>
<td>ELM: language (property)</td>
</tr>
<tr>
<td>Contact Hours of lecture</td>
<td>ELM: contact hours (property)</td>
</tr>
<tr>
<td>Credit point of lecture</td>
<td>ELM: credit received (property)</td>
</tr>
<tr>
<td>Credit points per semester</td>
<td>ELM: credit points (property)</td>
</tr>
<tr>
<td>Grade (value and per cent)</td>
<td>(calculated value, information only)</td>
</tr>
<tr>
<td>Average grade per semester</td>
<td>(calculated value, information only)</td>
</tr>
</tbody>
</table>

TABLE I. ATTRIBUTES OF A DS DOCUMENT (LEFT COLUMN) AND APPROPRIATE SEMANTIC CLASSES AND PROPERTIES (RIGHT COLUMN) ABBREVIATIONS: EVC – EDUCATIONAL VERIFIABLE CREDENTIAL, VC – VERIFIABLE CREDENTIAL, ELM – EUROPEAN LEARNING MODEL

| 1. INFORMATION IDENTIFYING THE HOLDER OF THE QUALIFICATION |
|-------------|----------------|
| Last name(s) | VC: holder |
| First name(s) | VC: holder |
| Date of Birth | VC: holder |
| Student identification number | VC: holder |

| 2. INFORMATION ON THE DIFFERENT LECTURES (GROUPED INTO SEMESTERS) |
|----------------------|----------------|
| Course Title | ELM: Identifier |
| Course Code | ELM: Identifier |
| Language of lecture | ELM: language (property) |
| Contact Hours of lecture | ELM: contact hours (property) |
| Credit point of lecture | ELM: credit received (property) |
| Credit points per semester | ELM: credit points (property) |
| Grade (value and per cent) | (calculated value, information only) |
| Average grade per semester | (calculated value, information only) |
Implementation #1: Integrating the model with the PDF documents

- ToR/DS are documents that have a lifecycle of its own and are embedded in processes and ICT-systems
 - Local information on the instance level
 - Can easily be shared (as any other document)

- Application of the Concept of a Semantic Specification Document (SSD)
 - Self-contained (content + semantic information)
 - Agnostic to semantic tooling
 - Ease of use & low entry barrier (Viewer-only)
 - Instances only, Schemas predefined

Similar usage pattern: a digital photo

Semantically Augmented Documents for the Use in Higher Education Institutions
Implementation #1: Integrating the model with the PDF documents

- Implementation for the use case of ToR/DS would integrate the semantic information from the new models directly in the PDF.

- Two possible implementations evaluated:
 - As (custom) meta-data using attribute-value pairs
 - As embedded document stream that appear as attached documents

- Preferred the second approach as it makes it easier to access the attachments from viewers as ordinary files
 - Maintains the aspect of self-containedness
Implementation #2: Hierarchical Concept Matrices (HCM)

- Using the new semantic models to augment (formalize) textual program description that are built around learning outcomes using competence matrices (CM)

- Arranging them in a hierarchy creates an informing backbone structure: Top-Down: Module – Lecture – Unit (generic to specific and vice versa)

- Could be used to build an hierarchy of connected CMs → HCM
Implementation #2: Hierarchical Concept Matrices (HCM)

- Transforming HCM concept into an easy to comprehend and use UI led iteratively to two screens
 1. A detailed view on the competences of one unit using a stack-of-cards metaphor for the hierarchy
 2. An overview that focuses on the connection between units using relevant competences
- Could be used to embed more and richer information in DS/Tor
(Preliminary) Answers from this research

- Based on the presented approach the findings could be summarized:

- In a more narrow sense (focusing on HEI):
 - How can the new models be used in the existing use-cases (ToR DS)?
 - How do the new models map to the existing structures, what works and what is missing?

- In a wider sense (focusing on Semantic Technologies in general):
 - Given that viable models exist, how can we get [non-expert] users to adopt it?
 - How can the new models be used in an already existing ICT infrastructure?

There are use cases for the models that can be mapped to existing documents providing an added value (e.g., „machine readable RPL“). There is an even larger potential for semantic models.

The new models should be embedded in the existing structure (e.g., the documents) by augmenting the generation process instead of replacing it. UI design tailored to the use case and as simple as possible is important.
Summary: We presented an approach to explore and use new semantic models within the
digital transformation of HEI and explored implementations with the focus on self-
contained documents and taillores & easy to use user interfaces for domain users.

Outlook: The next research activities are:
1. Integrating the PoC into the existing information sources and processes of a HEI
2. Adding more information to the model (e.g. a full study program)
3. Collecting empirical feedback from different stakeholders

Get in touch if you like:
- E-Mail: Karsten.Boehm@fh-kufstein.ac.at
- LinkedIn-Profile: https://www.linkedin.com/in/karstenboehm/
- ResearchGate: https://www.researchgate.net/profile/Karsten-Boehm