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WHAT IS THE PROBLEM? 

• Conceptual method is one of the important technique to calculate semantic similarity.

• In earlier times, methods evolved from looking at sentences word by word as a distinguishing feature to using 
grammatical rules to represent sentences [21].

• WordNet has changed the whole literature by providing the ontology to compute semantic similarity between words
[22]. 

• Semantic similarity can be used for many different purposes:
• estimating similarity between documents [3],

• ontology-based text clustering [4][5], 

• text summarization[6],

• entity disambiguation [7],

• developing recommender systems [8],

• semantic annotation [9],

• ontology merging [10],

• ontology segment matching [11],

• information retrieval [12],

• personalized support [13]- [15],

• and the graph editör similarity search problem [16], etc.



OUR PROPOSED METRIC – TAXONOMY TREE

• We propose a taxonomy based formula for 

calculating the conceptual similarity of 

sentences. 

• We used WordNet taxonomy.

• By considering the distance of these two 

words from their common ancestor and the 

position of the common ancestor in the 

ontology tree.

• If the nodes are not equal, the distance is 

correlated with the height difference of the 

nodes to the common parent.

• If both children are closer to the common 

parent, it means that the concepts of the 

children's nodes are also closer and similar. 

• When the distance to the common parent is 

small, the similarity is high.



OUR PROPOSED METRIC - FORMULA

• Find the similarity value for each pair of words, we can average them to calculate the similarity of the sentences.

• We compare each word in one sentence with the words in the other sentence, and the most similar pairs of words 
are included in the calculation of the average.



OUR PROPOSED METRIC - ALGORITHM

• Step 1: 

For each pair of sentences in the dataset, remove the stop-words and the punctuations.

• Step 2:

For each sentence in a pair, extract the part-of-speech (POS) tags of each word. 

• Step 3:

Create a combination of the words in the pair according to their POS tags, then calculate the similarity 
score of the word pairs, using (3). 

• Step 4:

From the previous step, we have many similarity score for a word. Accept the maximum similarity 
score.



DATASET

• Train split of the English STS benchmark dataset [37].

• It is a collection of data given in SemEval tasks between 2012 and 2017. 

• 5749 sentence

• The given similarity scores range from 0 to 5

• These scores are annotated by human judges

• We normalized the similarity scores using the min-max normalization function of scikit-learn [38].



EVALUATION

• If any of the sentences of the 

pairs do not contain adjectives, 

then the similarity between the 

adjectives is zero. Therefore, the 

similarity score in such a case is 

drastically lower.



EVALUATION - CONT’D

• For different thresholds, to see if our 

proposed method also labels these pairs 

similarly we checked what percentage of 

pairs the proposed method finds in this 

range.



CONCLUSION

• We have proposed a formula for calculating the conceptual similarity of sentences.

• By looking at the distance of these two words to their common ancestor and the location of 

the common ancestor in the ontology tree, we calculated the sentence similarity.

• If the compared words are close to their common ancestor, they are more likely to be similar.

• If the common ancestor is far from the root, the similarity of the compared words increases 

according to its position closer to the root node.

• Even if WordNet also has a taxonomical structure of adjectives, they name an attribute of a 

noun (a concept). Thus, they are not the actual concepts [39]. The inclusion of the similarity 

contribution between verbs or adjectives in our study negatively affected the results.

• In the future, we would like to use a 5-level human-annotated similarity dataset, where the

judges will be asked to classify the pairs into high similarity, low similarity, different, 

completely different, and no idea classes. 

• We expect our method to give better results on the human tagged datasets, since our proposed 

method simulates the human mind to find the conceptual relationship.
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