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The TLS 1.3

— Transport Layer Security (TLS) 1.3, 
defined in RFC 8446 [3], is a notorious 
internet security protocol, present in more 
than 60% of all internet connections based 
on HTTPS [1], [2].
— It provides end-to-end secure channels, 
and, like many others, uses public key 
cryptography (PKC).



The TLS 1.3



The quantum computer

— Qubit: |ψ  = a |0  + b |1⟩ ⟩ ⟩

— Normalization: |a|2 + |b|2 = 1



The quantum computer

— Register: |q  = |q⟩ 1  ⊗ |q⟩ 0  =⟩

c00|00  + c⟩ 01|01  + c⟩ 10|10  + c⟩ 11|11⟩

— Gate model: |qn  = G⟩ n|qn-1⟩

— Adiabatic model: applies an 
adiabatically slow time evolution of the 
state of the initial register (suitable for 
minimization problems)



Quantum algorithms for a 
PKC attack

— Shor’s period finding algorithm, 1994 
[4]: exponential speedup for solving 
factorization and DLP based problems [7], 
[14] with some newer implementations 
extending its usability to ECDLP [15], [16]

 Best implementation of 
Shor’s algorithm [17]

To break RSA-2048

2n+1 qubits 4097 qubits

Roughly n3log(n) gates Billions of gates



Quantum algorithms for a 
PKC attack

— However, due to errors in the 
measurements, the calculations have to be 
done multiple times or circa 1568 noisy 
qubits have to be used to simulate each 
perfect logical qubit [19]
— Other things to consider are gate and 
coherence times. Adding gates makes the 
total execution time longer and it cannot be 
longer than the coherence time.
Superconducting Neutral atoms Trapped ions

25 ns 19 μs 32 μs



Quantum algorithms for a 
PKC attack

— There are also good adiabatic 
implementations for factoring algorithms 
[21], [22], [23], and for DLP [24]
— The table is adapted from [14], [17], [25] 
Year Key length Algorithm

2001 4 bits Shor

2012 5 bits Shor

2012 16 bits Adiabatic

2016 18 bits Adiabatic

2018 19 bits Adiabatic

2019 20 bits Adiabatic

2020 41 bits Adiabatic



Threat model

 
Quantum 
eras

Description

Pre-quantum The era we are now, when 
QC are still not powerful 
enough for an effective break 
on cryptography;

Post-quantum 
initial

Quantum hardware is 
primitive and expensive, 
demanding a high skill level 
to break even short keys;

Post-quantum 
intermediate

Quantum hardware, price, 
and skill level to perform an 
attack are at an intermediate 
stage;

Post-quantum 
advanced

QC is fully established and 
available at a lower cost.



Threat model

 
Available 
resources

Skill 
level

Becomes a threat at 
which post-quantum 
era?

Governments 
and large 
organizations

3
2
1

Initial
Intermediate
Advanced

Hacker groups 
and small 
organizations

3
2
1

Intermediate
Advanced
∞

Individuals 3
2
1

Advanced
∞
∞



Attack scenarios

— Break confidentiality: passive or active 
attack
—Impersonation: active attack only



Attack scenarios:
Breaking confidentiality

— On certificate-based (server) mode:
1) collect Client and ServerHello, 
extracting the public keys epkCH and epkSH 
present in keyshare messages;
2) use Shor’s algorithm for ECDLP to 
break the KEX: it computes the private key 
from epkCH or epkSH in order to recover the 

ephemeral private key;
3) use the recovered ephemeral key to 
derive the symmetrical keys, using the TLS 
Key Schedule [3], allowing to decrypt the 
whole communication



Attack scenarios:
Breaking confidentiality

— On mutual authentication mode: same 
as previous



Attack scenarios:
Breaking confidentiality

— On post-handshake authentication 
mode: same as previous



Attack scenarios:
Breaking confidentiality

— On PSK-based resumption mode:
1) use previous steps on the First Handshake;
2) use the recovered ephemeral key to derive 
the symmetrical keys used throughout the 
communication;
3) decrypt the NewSessionTicket message, 
recovering the ticket information;
4) use the recovered information to derive the 
resumption PSK;
5) use the PSK to derive the second 
handshake’s symmetrical keys



Attack scenarios:
Impersonation

— On certificate-based (server) mode:
1) collect Client and ServerHello, 
extracting the public keys epkCH and epkSH 
present in keyshare messages;
2) use Shor’s algorithm for ECDLP to 
break the KEX: it computes the private key 
from epkCH or epkSH in order to recover the 

ephemeral private key;
3) use one of the recovered private keys to 
derive the symmetrical keys, using the TLS 
Key Schedule [3], and then decrypt the 
authentication messages; 



Attack scenarios:
Impersonation

4) use one of the alternatives to attack the
Certificate message and return the  
certificate private key:

— use Shor’s algorithm or adiabatic QC 
to solve the factorization problem on the 
RSA public key; or
— use Shor for ECDLP on the public 
key based on elliptic curves



Attack scenarios:
Impersonation

— On mutual authentication mode: same 
as for server authentication mode, but the 
attacker can choose to impersonate server 
or client. The main difference is the target
Certificate message (from the server or 
client)



Attack scenarios:
Impersonation

— On post-handshake authentication 
mode: impersonate the server is similar
to the previous modes, but to impersonate 
client:
1) check the presence of the 
post_handshake_auth extension;
2) use the steps 1-2 of the Certificate-
based authentication (server);
3) decrypt the communication using the
recovered symmetric keys, searching for 
the CertificateRequest message;



Attack scenarios:
Impersonation

4) use one of the alternatives to attack the 
client’s Certificate message and return the 
private key:

– solve the factorization problem with 
Shor’s algorithm or adiabatic QC; or
– use Shor for ECDLP instead



Attack scenarios:
Impersonation

— On PSK-based resumption mode: 
similar steps as used for server 
authentication mode, but the steps should 
be applied to the First Handshake. Having 
the PSK information, the attacker can 
impersonate both peers. However, PSKs
duration time can be limited up to 7 days 
[3], so the attack window is limited



Attack scenarios:
SNDL resources

Site 1h of 
captured 
packets 
(MB)

Expected 
storage 
cost for  
24h (GB)

Expected 
storage 
cost for 1y 
(TB)

Instagram.com 835.4 19.6 7

Youtube.com 723.7 17 6

Amazon.com 272.6 6.4 2.3

Gmail.com 124.8 2.9 1



Mitigation: QKD

— Quantum cryptography: the use of 
physics to create a different class of 
cryptography. QKD is the most common.
— QKD pros:

— the mathematics of quantum 
mechanics guarantees the key 
exchange is perfectly secure;
— the no-copy property of quantum 
mechanics ensures there will be no 
man-in-the-middle attack, because a 
measurement of the system would 
modify it



Mitigation: QKD

— QKD cons:
— no-copy property makes it 
impossible to re-rout or broadcast a 
qubit, making it necessary special 
network channels and hardware;
— it is affected by decoherence and 
most of the current QKD systems do 
not allow travels further than 200 km 
[28];
— implementation costs immensely for 
large networks. Making it a viable 
solution only for limited use cases



Mitigation: PQC

— PQC: classical devices with math 
problems hard for a QC to solve.
— NIST, 2022, announced 4 algorithms 
promissed to be quantum-safe:

— CRYSTALS-Kyber [29], a key 
encapsulation mechanism that can be 
used to establish symmetric keys;
— CRYSTALS-Dilithium [30], a DSA;
— Falcon [31], another DSA;
— SPHINCS+ [32], a hash-based DSA 



Mitigation: PQC

— PQC pros:
— more viable for KEX than QKD;
— there are also implementations for 
digital signatures

— PQC cons:
— have been tested for years, but it’s 
still impossible to tell for how long they 
will remain unbreakable [28];
– Most of them are slower than the 
traditional algorithms for KEX or digital 
signature, impacting in slower page 
loads and a risk of packet loss



Mitigation: Hybrid

— Hybrid implementations combine pre- 
and post-quantum cryptography.
— E.g.:

— Combining the output of a pre- and a 
post-quantum algorithm with XOR in a 
KEX;
— Creating 2 signatures, one with a 
pre- and another with a post-quantum 
algorithm



Mitigation: ROI

— Key length requires more gates, hence, 
longer execution time.
— Adding encryption layers, since the QC 
has to be used for each one of them [25];
— PFS, PCS, key management, short-term 
certificates can diminish the data 
recovered on each attack or shorten the 
window for an attack;
— Because the amount of storage 
necessary for a SNDL attack is huge, 
company have to be aware of social 
engineering attacks



Conclusion

— The paper exposed:
— The threats of QC on TLS 1.3;
— Existing quantum  algorithms for an 
attack against PKC;
— Achievements of these algorithms;
— Detailed steps for a quantum attack 
in different handshake modes;
— Approximate requirements for SNDL;
— Mitigation methods
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