Drivers for a Secure Mobile App Development Framework

Authors: Marijke Coetzee, Christoff Jacobs

Presenter: Christoff Jacobs, University of Johannesburg, toffie_cj@yahoo.com

Presenter

- Christoff Jacobs
- Software developer
- +18 years software development experience
- Insurance, healthcare, stock trading, vehicle and banking
- Focus on mobile security and software development architecture and best practices
- Current PhD

Agenda

- 1. Article introduction
- 2. Presenter
- 3. Presentation
- 4. The end

Introduction

- Al generated Midjourney
- Using mobile, guardian, portal, end of the world

Introduction

- Pandemic implications
- Ubiquitous app deployment
- Trends in cybersecurity threats
- Urgency in security measures
- Methods of authentication
- Absence of standardized approaches

- Friction in software development
- Requisite specialization
- Limitations in existing frameworks
- Imperative for a secure development
 framework

Mobile app ecosystem (example)

Mobile app ecosystem

- The mobile application ecosystem
- Elevated risk factors
- Elements within the ecosystem
- Critical integration nodes
- Extending beyond user interface

- The centrality of security
- Validation through testing
- Deployment for customer use
- Facilitating network communication
- Exploring alternative approaches

- The lack of mobile application SDLC models
- Predominance of technical emphasis over lifecycle consideration
- Constraints of conventional SDLC methodologies

- Security predicaments within traditional SDLC
- Depletion of secure development frameworks
- Proliferation of generalized frameworks
- Advocacy for a holistic security lifecycle
 approach

- Recommendations on industry standards
- Myriad security imperatives
- Requisite for a coherent framework

- NIST
 - NIST regulatory updates
 - NIST 800-163 framework
 - Application security requirements
 - Customized mobile app security
 - NIST 800-218 SSDF

- OWASP
 - OWASP's significance in advancing mobile app security
 - Emphasis on security aspects
 - Thorough examination and constructive input

- OWASP
 - Vulnerability domains defined by

MASVS

Endorsement by CREST alliance

- MITRE ATT&CK
 - MITRE's ATT&CK knowledgebase
 - Platform-specific security topics
 - Enhancing mobile app security expertise
 - Practical examples

- DEVSECOPS
 - DevSecOps overview
 - Key DevSecOps practices
 - Challenges in implementation
 - Identification of security drivers
 - Comprehensive approach

Security drivers for a secure software mobile software development framework

- Introduction -> mobile app ecosystem -> standard security frameworks
- Issues still exist in identifying security drivers for a secure mobile software development framework

Security drivers for a secure software mobile software development framework

- 1. Management of software developers for security
- 2. A structured security approval strategy for security vendors
- 3. Integrate security education into secure software development

4. Standardised secure software development practices and coding principles 5. A baseline set of standardised security mechanisms for mobile apps 6. Standardised threat modelling approach

Security drivers for a secure software mobile software development framework

- 7. Standardise testing schedule
- 8. Standardised mobile app vetting system for an industry
- 9. Regulated security reporting and collaboration

Evaluation

TABLE I. COMPARISON OF SECURE DEVELOPMENT FRAMEWORKS AND SECURITY DRIVERS

Security drivers	NIST	OWASP	MITRE	DEVSECOPS
Management of software developers for security				X
A structured security approval strategy	Х			
Integrate security education for secure software development	Х	X	X	X
Standardised secure software development practices and coding principles		X		
A baseline set of standardised security mechanisms for mobile apps				
Standardised threat modelling approach		X		
Standardise testing schedule	Х			X
Standardised mobile app vetting system for an industry		X		
Regulated security reporting and collaboration				

Evaluation

- Customization for specific industries
- Identification of research gap
- Security Driver evaluation
- Robustness of OWASP

- NIST's contribution
- MITRE ATT&CK's Unique Perspective
- Emphasis on DevSecOps
- Critical insights from framework comparison
- Prospects for future framework development

Conclusion and future work

- Intricacies within the mobile ecosystem
- Dilemmas encountered in security mechanism implementation
- Limitations of current frameworks
- Research contribution and prospects for future endeavors

The end