

Funded in part by the German Federal Ministry of Education and Research (BMBF) under grant number (FKZ): 13N15736

Joining of Data-driven Forensics and Multimedia Forensics for Deepfake Detection on the Example of Image and Video Data

Dennis Siegel, Christian Kraetzer, Jana Dittmann Otto-von-Guericke University, Magdeburg, Germany dennis.siegel@ovgu.de

> The Seventeenth International Conference on Emerging Security Information, Systems and Technologies SECURWARE 2023

Dennis Siegel dennis.siegel@ovgu.de

Otto-von-Guericke University, Magdeburg, Germany

- PhD student at Advanced Multimedia and Security Lab (AMSL) at Otto-von-Guericke University Magdeburg (OvGU)
- 2021: received his masters degree in Computer Science at OvGU
- currently working on the research project "FAKE-ID"
- research field: media forensic

- Introduction and Motivation
- Brief summary of the state of the art
- Conceptional joining of IT and media forensic methodologies
- Application of the concept
- Summary, Conclusions and Future Work

Introduction and Motivation

- DeepFakes pose a new challenge to digital medias integrity and authenticity
- with further advances it will be near impossible to spot them with the bare eyes
- Current state of the art to mitigate the threat of fake identities is based on detectors utilize machine learning (mostly deep learning) to detect DeepFake.
- But with the intended usage in the forensic context, further requirements have to be met (i.e., aspects of human oversight and control).

Introduction and Motivation

- Many **process models** for forensic processes exist for 'traditional' forensic sub-disciplines (e.g. dactyloskopy), the purpose of these is to **make the corresponding investigations fit for courtroom usage** (i.e. define standards for application of methods, certification of practitioners, etc.)
- Most media forensic approaches today still lack maturity in this regard
- Academic focus here lies mostly only on **proposing detectors** for specific forensic tasks like image manipulation detection or DeepFake detection
- This scientific domain is in need of modeling work, aiming at creating corresponding domain specific process models

- Our contributions in this paper:
 - conceptional joining of IT and media forensic methodologies on the selected example of the existing Data-Centric Examination Approach (DCEA) Kiltz [2020]; Siegel et al. [2022] and the Best Practice Manual for Digital Image Authentication (BPM-DI) from the European Network of Forensic Science Institute (ENFSI) European Network of Forensic Science Institutes [2021].
 - illustration of applicability and benefits of our concept on the example of three existing applications ExifTool (*Phil Harvey* [2016]), the hand-crafted DeepFake detector DF_{mouth} (*Siegel et al.* [2021]) as well as the deep learning based DeepFake detector LipForensics (*Haliassos et al.* [2021]).

State-of-the-art: Domain specific process modeling for media forensics

- European SOTA on media forensic process models: ENFSI best practice manuals, e.g. on Digital Image Authentication (*European Network of Forensic Science Institutes* [2021]), Forensic Video and Image Enhancement (*European Network of Forensic Science Institutes* [2018a]) and Facial Image Comparison (*European Network of Forensic Science Institutes* [2018b])
- German situation regarding IT forensics in general (including media forensics): BSI "Leitfaden IT-Forensik" *BSI* [2011]
- Accepted models / standardization / certification of media forensic methods are rare in general (see e.g. discussion in *Krätzer* [2013])
- For novel media forensics tasks like DeepFake detection no dedicated process models are currently existing (to our knowledge)

State-of-the-art: Domain specific process modeling for media forensics

• Starting point of our own modeling work:

- ENFSI "Best Practice Manual for Digital Image Authentication" *European Network of Forensic Science Institutes* [2021]
- BSI "Leitfaden IT-Forensik" BSI [2011]
- and existing publications extending this process model, especially Kiltz [2020]
- initial steps towards taylor-made model for media forensics (including DeepFake detection): *Siegel et al.* [2022]
- regulatory documents, i.e., Artificial Intelligence Act (AIA) *European Commission* [2021]; *European Parliament* [2023]

ENFSI "Best Practice Manual for Digital Image Authentication"

- "aims to provide a framework for procedures, quality principles, training processes and approaches to the forensic examination"
- describes investigation steps for image authenticity validation
- investigation steps are categorized in four aspects:
 - Auxiliary data analysis
 - Image content analysis
 - Strategies
 - Peer review

Figure 1: Phase model (based on BSI [2011])

State-of-the-art: Deriving a domain adapted context model for media forensics

Forensic data type	Description			
MFDT1 "digital input	The initial media data considered for the in-			
data''	vestigation.			
MFDT2 "processed	Results of transformations to media data (e.g.			
media data"	grayscale conversion, cropping)			
MFDT3 "contextual	Case specific information (e.g. for fairness			
data''	evaluation)			
MFDT4 "parameter	Contain settings and other parameter used for			
data''	acquisition, investigation and analysis			
MFDT5 "examination	including the traces, patterns, anomalies, etc			
data''	that lead to an examination result			
MFDT6 "model data"	Describe trained model data (e.g. face detec-			
	tion and model classification data)			
MFDT7 "log data"	Data, which is relevant for the administration			
	of the system (e.g. system logs)			
MFDT8 "chain of	Describe data used to ensure integrity and au-			
custody & report	thenticity (e.g. hashes and time stamps) as			
data''	well as the accompanying documentation for			
	the final report.			

Table 1: Media Forensic Data Types (MFDT)proposed in Siegel et al. [2022]

Figure 2: Template structure for a single component introduced in *Siegel et al.* [2022]

- Aim: identify investigation steps to validate integrity and authenticity of digital media (here: DeepFakes)
- on the basis of the existing Best Practice Manual for Digital Image Authentication and DCEA
- according to the phase model: SP is excluded

Conceptional joining of IT and media forensic methodologies

Figure 3: Extension of the forensic methodology proposed in *European Network of Forensic Science Institutes* [2021]. Extensions are marked in gray. Application of data types can be found in red.

Tools: ExifTool

- open source tool by Phil Harvey [2016] to read, write and edit metadata
- applicable to a wide range of image and video formats
- in total, eight features are extracted, including both required and optional metadata fields

I	xt. BPM-DI	feature	description	value	processing step	analysis	strategy	data type
	Analysis of	$ID-exif_1$	MACtime	timestamp		File system	Processing	
	external digital	ID-exif ₂	file size	string		metadata	analysis	
data is	context data	ID-exif ₃	system feature flags	string		metadata	anarysis	
5 5	File structure	ID-exif ₄	file format	string	PS-exif	File	Source &	MFDT3
	analysis	ID-exif ₅	file format version	version number		structures	Processing	
Auxil	analysis	ID-exif ₆	video codec	string		structures	analysis	
	Embedded meta-	ID-exif ₇	file resolution	int [0, ∞]		Additional	Context	
	data analysis	ID-exif ₈	file frame rate	real [0, ∞]		metadata	analysis	

 Table 2: Categorization of ExifTool according to the proposed methodology.

- DeepFake detector based on the mouth region, proposed in Siegel et al. [2021]
- usage of traditional machine learning (i.e., hand-crafted feature spaces and classification)
- Krätzer et al. [2023]: benchmarking of the detector based on datasets FaceForensics++ (*Rössler et al.* [2019]), DFD (*Rössler et al.* [2019]), Celeb-DF (*Li et al.* [2020]) and HiFiFace (*Wang et al.* [2021])
- detection performance: 69.9% accuracy
- \rightarrow suitable only for certain DeepFake synthesis methods
- \rightarrow integration for decision support

Figure 4: Process pipeline of DF_{mouth} as proposed in Siegel et al. [2021] and Krätzer et al. [2023].

Ext	. BPM-DI	feature	description	value	processing step	analysis	strategy	data type
		$ID-mouth_1$	abs max change Y	real [0, ∞]	PS-mouth₄	Physiology analysis	Context analysis	- MFDT5
		ID-mouth ₂	max change Y	real [0, ∞]				
	Temporal	$ID-mouth_3$	min change Y	real [- ∞ , 0]				
	content	ID-mouth ₄	abs max change X	real [0, ∞]				
.s	analysis	ID-mouth ₅	max change X	real [0, ∞]	F5-mouth4			
analysis	anaiysis	ID-mouth ₆	min change X	real [- ∞ , 0]	-			
		ID-mouth ₇	percentage time state 1	real [0, 1]				
content		ID-mouth ₁₂	percentage time state 2	real [0, 1]				
ont		ID-mouth ₈	max regions state 1	real [0, ∞]	$PS\operatorname{-mouth}_5$	Local analysis	Processing analysis	
		ID-mouth ₉	max FAST keypoints state 1	real [0, ∞]				
Media	Spatial	ID-mouth ₁₀	max SIFT keypoints state 1	real [0, ∞]				
2	content analysis	ID-mouth ₁₁	max sobel pixel state 1	real [0, ∞]				
		ID-mouth ₁₃	min regions state 2	real [0, ∞]				
		ID-mouth ₁₄	min FAST keypoints state 2	real [0, ∞]				
		ID-mouth ₁₅	min SIFT keypoints state 2	real [0, ∞]				
		ID-mouth ₁₆	max sobel pixel state 2	real [0, ∞]				

Table 3: Categorization of DF_{mouth} according to the proposed methodology.

- DeepFake detector based on the mouth region and its movement, proposed in *Haliassos et al.* [2021]
- theoretical inclusion to further validate the suitability for deep learning based approaches
- The detection process can be separated in three processing steps:
 - 1. preprocessing
 - 2. lip reading for feature extraction using pre-trained ResNet-18
 - 3. DeepFake classification using multiscale temporal convolutional network (MS-TCN)

Ext. B	PM-DI	feature	description	value	processing step	analysis	strategy	data type
	Spatial	al ID-LF1	extraction of 25 frames,	int [0, 255]	PS-LF ₁	Local	Context	MFDT2
	content	ID-LF1	grayscale, crop and align			analysis	analysis	
s t	analysis ID-LF2	feature extraction	feature vector	PS-LF ₂	Local	Context	MFDT3	
Media content analysis	anarysis	ID-LF2	utilizing ResNet-18	of size 512	F J-LF2	analysis	analysis	WI DTS
Med conte analy	Temporal content analysis	ID-LF ₃	classification of mouth movement based on MS-TCN	label: {real, fake} probability: real [0, 1]	PS-LF ₃	Physiology analysis	Processing analysis	MFDT5

Table 4: Categorization of LipForensics according to the proposed methodology.

- each individual step of the underlying process have to be clear
- instead of providing the decision the features resulting in that decision have to be provided
- first conceptual example consists of four segments:
 - 1. filter for forensic categorization
 - 2. media player
 - 3. feature visualization
 - 4. decision-making by the human operator

Integrating the human operator in DeepFake detection

pe_rel_scos weew	MINE AMSL
Forensic Methods ~	VICEO FRANCE EXPERIENCENTA
Analysis Strategy	
Physiology analysis Context analysis	
Features v	
Detector Data Type	
deep-fake-detector-mouth-features MFDT5	
Alas, Mare, Change, Y deep-date detailstreads headers table 3.0001000000000000000000000000000000000	
deep-take detector-mouth-features Value 2.022222222224	
voice L22764441175326 * Principal pri	11.2. We wish Where Regen liker data Schweitensen? 10. Care, 4 data Schweitensen 1997. Schwarzen Prepring undyn 10. Care, 4 data Schweitensen Here Arter Beder Schweitensen, 1997. Schwarzen Prepring undyn 10. And Here Knewer Reine Here Arter Beder Schweiten 1997. Schwarzen Prepring undyn 2. Annes: The size data Schweiten 1997. Schwarzen Prepring undyn
	13. J. Ar there frames where seech are detected by the detector, but in the video the mouth in class 20 J. Are there frames where seach wave detected by the detector, but in the video the mouth in class 20 J. Are there frames where seach wave detected by the detector, but in the video the mouth in class 20 J. Are there frames where seach wave detected by the detector, but in the video the mouth in class 20 J. Are there frames where seach wave detected by the detector, but in the video the mouth in class 20 J. Are there frames where seach wave detected by the detector, but in the video the mouth in class 20 J. Are there frames where seach wave detected by the detector, but in the video the mouth in class
* * * * * * * * * * * * * * * * * * * *	offen did it occur? Percent Tree Testh dees-fake-delector-exact/-leabures WEDTS Context probain Physiology analysis

Figure 5: Demonstration of the extended Methods, exemplified on DF_{mouth} for video id0_id1_0000 of the Celeb-DF dataset *Li et al.* [2020] - from *Siegel and Dittmann* [2023]

- suitability of the proposed extensions can be validated for DeepFake detection
- in this exemplary approach not all methods can be addressed by using three tools
- only case specific investigation steps are addressed, the detectors suitability have to be validated beforehand, including steps of benchmarking and certification
- further research to enable a more specific integration of audio domain *European Network* of Forensic Science Institutes [2022]
- 'explainable AI', especially in the context of 'human in the loop' and 'human in control' have to explored in more detail to minimize the potential of error and uncertainty

Thank you for your attention!

References

BSI, Leitfaden IT-Forensik, German Federal Office for Information Security, 2011.

European Commission, Proposal for a Regulation of the european parliament and of the council Laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts, COM(2021) 206 final, [Online]. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 [Last retrieved: 14.09.2021]., 2021.

European Network of Forensic Science Institutes, Best practice manual for forensic image and video enhancement, *ENFSI-BPM-DI-02*, [Online]. Available at: https:

//enfsi.eu/wp-content/uploads/2017/06/Best-Practice-Manual-for-Forensic-Image-and-Video-Enhancement.pdf
[Last retrieved: 12.09.2023]., 2018a.

European Network of Forensic Science Institutes, Best practice manual for facial image comparison, *ENFSI-BPM-DI-01*, [Online]. Available at: https://enfsi.eu/wp-content/uploads/2017/06/ENFSI-BPM-DI-01.pdf [Last retrieved: 12.09.2023]., 2018b.

European Network of Forensic Science Institutes, Best practice manual for digital image authentication, ENFSI-BPM-DI-03, [Online]. Available at: https://enfsi.eu/wp-content/uploads/2022/12/1.-BPM_Image-Authentication_ENFSI-BPM-DI-03-1.pdf [Last retrieved: 12.01.2023]., 2021. European Network of Forensic Science Institutes, Best practice manual for digital audio authenticity analysis, *ENFSI-FSA-BPM-002*, [Online]. Available at:

https://enfsi.eu/wp-content/uploads/2022/12/FSA-BPM-002_BPM-for-Digital-Audio-Authenticity-Analysis.pdf [Last retrieved: 12.09.2023]., 2022.

- European Parliament, Amendments adopted by the european parliament on 14 june 2023 on the proposal for a regulation of the european parliament and of the council on laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts, COM(2021)0206 C9-0146/2021 2021/0106(COD), [Online]. Available at: https://www.europarl.europa.eu/doceo/document/TA-9-2023-0236_EN.html [Last retrieved: 12.09.2023], 2023.
- Haliassos, A., K. Vougioukas, S. Petridis, and M. Pantic, Lips don't lie: A generalisable and robust approach to face forgery detection, in *IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021*, pp. 5039–5049, Computer Vision Foundation / IEEE, doi: 10.1109/CVPR46437.2021.00500, 2021.
- Kiltz, S., Data-centric examination approach (DCEA) for a qualitative determination of error, loss and uncertainty in digital and digitised forensics, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, 2020.
- Krätzer, C., D. Siegel, S. Seidlitz, and J. Dittmann, Human-in-control and quality assurance aspects for a benchmarking framework for DeepFake detection models, *Electronic Imaging*, 35(4), 379–1–379–6, doi: 10.2352/ei.2023.35.4.mwsf-379, 2023.
- Krätzer, C., Statistical pattern recognition for audio-forensics empirical investigations on the application scenarios audio steganalysis and microphone forensics, Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, 2013.
- Li, Y., X. Yang, P. Sun, H. Qi, and S. Lyu, Celeb-df: A large-scale challenging dataset for deepfake forensics, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 3204–3213, IEEE, doi: 10.1109/CVPR42600.2020.00327, 2020.

Phil Harvey, Exiftool, [Online]. Available at: https://exiftool.org/ [Last retrieved: 12.09.2023], 2016.

- Rössler, A., D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Nießner, Faceforensics++: Learning to detect manipulated facial images, in 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 1–11, IEEE, doi: 10.1109/ICCV.2019.00009, 2019.
- Siegel, D., and J. Dittmann, Tracemap, student project within the lecture of Multimedia and Security [MMSEC], Otto-von-Guericke-University Magdeburg, unpublished, 2023.
- Siegel, D., C. Krätzer, S. Seidlitz, and J. Dittmann, Media forensics considerations on deepfake detection with hand-crafted features, *Journal of Imaging*, 7(7), doi: 10.3390/jimaging7070108, 2021.
- Siegel, D., C. Krätzer, S. Seidlitz, and J. Dittmann, Forensic data model for artificial intelligence based media forensics illustrated on the example of DeepFake detection, *Electronic Imaging*, 34(4), 324–1–324–6, doi: 10.2352/ei.2022.34.4.mwsf-324, 2022.
- Wang, Y., et al., Hififace: 3d shape and semantic prior guided high fidelity face swapping, in *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21*, edited by Z.-H. Zhou, pp. 1136–1142, International Joint Conferences on Artificial Intelligence Organization, doi: 10.24963/ijcai.2021/157, main Track, 2021.