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Introduction and Motivation

• DeepFakes pose a new challenge to digital

medias integrity and authenticity

• with further advances it will be near

impossible to spot them with the bare eyes

• Current state of the art to mitigate the

threat of fake identities is based on

detectors utilize machine learning (mostly

deep learning) to detect DeepFake.

• But with the intended usage in the forensic

context, further requirements have to be

met (i.e., aspects of human oversight and

control).
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Introduction and Motivation

• Many process models for forensic processes exist for ‘traditional’ forensic sub-disciplines

(e.g. dactyloskopy), the purpose of these is to make the corresponding investigations

fit for courtroom usage (i.e. define standards for application of methods, certification of

practitioners, etc.)

• Most media forensic approaches today still lack maturity in this regard

• Academic focus here lies mostly only on proposing detectors for specific forensic tasks

like image manipulation detection or DeepFake detection

• This scientific domain is in need of modeling work, aiming at creating corresponding

domain specific process models
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Introduction and Motivation

• Our contributions in this paper:

• conceptional joining of IT and media forensic methodologies on the selected example of

the existing Data-Centric Examination Approach (DCEA) Kiltz [2020]; Siegel et al. [2022]

and the Best Practice Manual for Digital Image Authentication (BPM-DI) from the

European Network of Forensic Science Institute (ENFSI) European Network of Forensic

Science Institutes [2021].

• illustration of applicability and benefits of our concept on the example of three existing

applications ExifTool (Phil Harvey [2016]), the hand-crafted DeepFake detector

DFmouth (Siegel et al. [2021]) as well as the deep learning based DeepFake detector

LipForensics (Haliassos et al. [2021]).
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State-of-the-art: Domain specific process modeling for media forensics

• European SOTA on media forensic process models: ENFSI best practice manuals, e.g. on

Digital Image Authentication (European Network of Forensic Science Institutes [2021]),

Forensic Video and Image Enhancement (European Network of Forensic Science Institutes

[2018a]) and Facial Image Comparison (European Network of Forensic Science Institutes

[2018b])

• German situation regarding IT forensics in general (including media forensics): BSI

“Leitfaden IT-Forensik” BSI [2011]

• Accepted models / standardization / certification of media forensic methods are rare in

general (see e.g. discussion in Krätzer [2013])

• For novel media forensics tasks like DeepFake detection no dedicated process models are

currently existing (to our knowledge)
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State-of-the-art: Domain specific process modeling for media forensics

• Starting point of our own modeling work:

• ENFSI “Best Practice Manual for Digital Image Authentication” European Network of

Forensic Science Institutes [2021]

• BSI “Leitfaden IT-Forensik” BSI [2011]

• and existing publications extending this process model, especially Kiltz [2020]

• initial steps towards taylor-made model for media forensics (including DeepFake

detection): Siegel et al. [2022]

• regulatory documents, i.e., Artificial Intelligence Act (AIA) European Commission [2021];

European Parliament [2023]
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State-of-the-art: Domain specific process modeling for media forensics

ENFSI “Best Practice Manual for Digital Image

Authentication”

• “aims to provide a framework for

procedures, quality principles, training

processes and approaches to the forensic

examination”

• describes investigation steps for image

authenticity validation

• investigation steps are categorized in four

aspects:

• Auxiliary data analysis

• Image content analysis

• Strategies

• Peer review

Figure 1: Phase model (based on BSI [2011])
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State-of-the-art: Deriving a domain adapted context model for media forensics

Forensic data type Description

MFDT1 “digital input

data”

The initial media data considered for the in-

vestigation.

MFDT2 “processed

media data”

Results of transformations to media data (e.g.

grayscale conversion, cropping)

MFDT3 “contextual

data”

Case specific information (e.g. for fairness

evaluation)

MFDT4 “parameter

data”

Contain settings and other parameter used for

acquisition, investigation and analysis

MFDT5 “examination

data”

including the traces, patterns, anomalies, etc

that lead to an examination result

MFDT6 “model data” Describe trained model data (e.g. face detec-

tion and model classification data)

MFDT7 “log data” Data, which is relevant for the administration

of the system (e.g. system logs)

MFDT8 “chain of

custody & report

data”

Describe data used to ensure integrity and au-

thenticity (e.g. hashes and time stamps) as

well as the accompanying documentation for

the final report.

Table 1: Media Forensic Data Types (MFDT)

proposed in Siegel et al. [2022]
Figure 2: Template structure for a single

component introduced in Siegel et al. [2022]
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Conceptional joining of IT and media forensic methodologies (1/2)

• Aim: identify investigation steps to validate integrity and authenticity of digital media

(here: DeepFakes)

• on the basis of the existing Best Practice Manual for Digital Image Authentication and

DCEA

• according to the phase model: SP is excluded
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Conceptional joining of IT and media forensic methodologies

Figure 3: Extension of the forensic methodology proposed in European Network of Forensic Science

Institutes [2021]. Extensions are marked in gray. Application of data types can be found in red.
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Tools: ExifTool

• open source tool by Phil Harvey [2016] to read, write and edit metadata

• applicable to a wide range of image and video formats

• in total, eight features are extracted, including both required and optional metadata fields

Ext. BPM-DI feature description value processing step analysis strategy data type

A
u
xi
lia
ry

d
at
a

an
al
ys
is

Analysis of

external digital

context data

ID-exif1 MACtime timestamp

PS-exif

File system

metadata

Processing

analysis

MFDT3

ID-exif2 file size
string

ID-exif3 system feature flags

File structure

analysis

ID-exif4 file format string
File

structures

Source &

Processing

analysis

ID-exif5 file format version version number

ID-exif6 video codec string

Embedded meta-

data analysis

ID-exif7 file resolution int [0, ∞] Additional

metadata

Context

analysisID-exif8 file frame rate real [0, ∞]

Table 2: Categorization of ExifTool according to the proposed methodology.
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Tools: DFmouth

• DeepFake detector based on the mouth region, proposed in Siegel et al. [2021]

• usage of traditional machine learning (i.e., hand-crafted feature spaces and classification)

• Krätzer et al. [2023]: benchmarking of the detector based on datasets

FaceForensics++ (Rössler et al. [2019]), DFD (Rössler et al. [2019]), Celeb-DF (Li et al.

[2020]) and HiFiFace (Wang et al. [2021])

• detection performance: 69.9% accuracy

→ suitable only for certain DeepFake synthesis methods

→ integration for decision support
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Tools: DFmouth

Figure 4: Process pipeline of DFmouth as proposed in Siegel et al. [2021] and Krätzer et al. [2023].
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Tools: DFmouth

Ext. BPM-DI feature description value processing step analysis strategy data type

M
ed
ia

co
n
te
n
t
an
al
ys
is

Temporal

content

analysis

ID-mouth1 abs max change Y real [0, ∞]

PS-mouth4
Physiology

analysis

Context

analysis

MFDT5

ID-mouth2 max change Y real [0, ∞]

ID-mouth3 min change Y real [-∞, 0]

ID-mouth4 abs max change X real [0, ∞]

ID-mouth5 max change X real [0, ∞]

ID-mouth6 min change X real [-∞, 0]

ID-mouth7 percentage time state 1 real [0, 1]

ID-mouth12 percentage time state 2 real [0, 1]

Spatial

content

analysis

ID-mouth8 max regions state 1 real [0, ∞]

PS-mouth5

ID-mouth9 max FAST keypoints state 1 real [0, ∞]

ID-mouth10 max SIFT keypoints state 1 real [0, ∞]

ID-mouth11 max sobel pixel state 1 real [0, ∞] Local Processing

ID-mouth13 min regions state 2 real [0, ∞] analysis analysis

ID-mouth14 min FAST keypoints state 2 real [0, ∞]

ID-mouth15 min SIFT keypoints state 2 real [0, ∞]

ID-mouth16 max sobel pixel state 2 real [0, ∞]

Table 3: Categorization of DFmouth according to the proposed methodology.
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Tools: LipForensics

• DeepFake detector based on the mouth region and its movement, proposed in Haliassos

et al. [2021]

• theoretical inclusion to further validate the suitability for deep learning based approaches

• The detection process can be separated in three processing steps:

1. preprocessing

2. lip reading for feature extraction using pre-trained ResNet-18

3. DeepFake classification using multiscale temporal convolutional network (MS-TCN)
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Tools: LipForensics

Ext. BPM-DI feature description value processing step analysis strategy data type

M
ed
ia

co
n
te
n
t

an
al
ys
is

Spatial

content

analysis

ID-LF1
extraction of 25 frames,

grayscale, crop and align
int [0, 255] PS-LF1

Local

analysis

Context

analysis
MFDT2

ID-LF2
feature extraction

utilizing ResNet-18

feature vector

of size 512
PS-LF2

Local

analysis

Context

analysis
MFDT3

Temporal

content

analysis

ID-LF3

classification of

mouth movement based

on MS-TCN

label:

{real, fake}
probability:

PS-LF3
Physiology

analysis

Processing

analysis
MFDT5

real [0, 1]

Table 4: Categorization of LipForensics according to the proposed methodology.
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Integrating the human operator in DeepFake detection

• each individual step of the underlying process have to be clear

• instead of providing the decision the features resulting in that decision have to be provided

• first conceptual example consists of four segments:

1. filter for forensic categorization

2. media player

3. feature visualization

4. decision-making by the human operator
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Integrating the human operator in DeepFake detection

Figure 5: Demonstration of the extended Methods, exemplified on DFmouth for video id0 id1 0000 of

the Celeb-DF dataset Li et al. [2020] - from Siegel and Dittmann [2023]
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Summary, Conclusions and Future Work

• suitability of the proposed extensions can be validated for DeepFake detection

• in this exemplary approach not all methods can be addressed by using three tools

• only case specific investigation steps are addressed, the detectors suitability have to be

validated beforehand, including steps of benchmarking and certification

• further research to enable a more specific integration of audio domain European Network

of Forensic Science Institutes [2022]

• ‘explainable AI’, especially in the context of ‘human in the loop’ and ‘human in control’

have to explored in more detail to minimize the potential of error and uncertainty
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Thank you for your attention!
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