SECURWARE 2023

Orchestrating a brighter world

SECURWARE 2023 30021 Lightweight Fine-grained Access Control Mechanism Based on Zero Trust in CPS

September 25, 2023 Nakul D Ghate, Shohei Mitani, Hirofumi Ueda Secure Systems Platforms Research Laboratories NEC Japan

Orchestrating a brighter world

NEC creates the social values of safety, security, fairness and efficiency to promote a more sustainable world where everyone has the chance to reach their full potential.

Table of Contents

- Background: CPS system, attacks and Zero Trust
- Challenges: Zero Trust implementation for CPS
- Related works: Distribution of access control
- Our approach and algorithm
- Evaluation Results
- Limitations and Improvements
- Conclusion and Future works

Background: Cyber-Physical Systems

CPS is a combination of closely integrated physical processes, networking and communication

- Difficult to deploy perfect security solutions owing to heterogeneity and resource limitations
 - => Attacks and threats exist on end devices, transmission, application and its actuation

Existing Approach: Zero Trust Access Control Model

In Zero Trust, all assets are monitored, all communications are evaluated to be secured Uses Fine-grained access policies for achieving high levels of security

Fine-grained policies increase the workload

Fine-grained policies increase the workload on the Zero Trust controller

Network Access Control

Using Network Access control in front helps in reducing workload but with coarse-grained policies

Network Access Control

Using Network Access control in front helps in reducing workload but with coarse-grained policies

The granularity of access control is switched based on application security requirements

Always use Fine-grained Deep inspection for Confidential Resources

Always use Coarse-grained Packet filtering for Non-Confidential Resource

Always use Fine-grained Deep inspection for Confidential Resources

Always use Coarse-grained Packet filtering for Non-Confidential Resource

SECURWARE 2023

Can we do better ? (Recognizing the problems)

Decisions of granularity is based on comprehensive understanding of dynamic environment

Our approach

The choice of policy enforcement location is dynamic based on the environment

Our approach

The choice of policy enforcement location is dynamic based on the environment

Our approach

The choice of policy enforcement location is dynamic based on the environment

Many IOT devices are identified by a common IP address under Network Address Translation (NAT)

Network Layer will identify all devices only by their Source IP address

Network Layer cannot distinguish between different devices belonging to same Source IP

Source IP: 192.168.0.2

Source IP: 192.168.0.3

SECURWARE 2023

Assumptions and algorithm

Distribution of DENY rule on Network layer may lead to mis-control

Distribution of DENY rule on Network layer may lead to MIS-CONTROL

Our Distribution Algorithm attempts to reduce such mis-control

NEC

SECURWARE 2023

The Algorithm

SECURWARE 2023

The Algorithm

(Note: "*" denotes that the process is in progress)

The Algorithm

The Algorithm

Experiments and Results

Average ACL size reduces after applying the distribution algorithm

smaller

30 © NEC Corporation 2023

Experiments and Results

Average access workload is smaller after applying the distribution algorithm

Experiments and Results

(100%)

(100%)

Our method performs better in reducing workload and preserving access granularity

Confusion Matrix	Denied (Before Distribution)	Allowed (Before Distribution)	We quantify the security after distribution using	If all the decisions which are "denied" after distribution were also "denied" before are True Positive (TP)
Denied (After Distribution)	TP = 60%	FP = 15%	Access Granularity metric We calculate Granularity	
Allowed (After Distribution)	FN = 0%	TN = 25%	metric as a Confusion matrix	
Overall Results				which are "denied"
Metric	Original Application-lev ACL	Network- el level ACL	Proposed method	"allowed" before are False Positive (FP)

7%

85%

1%

38%

Our proposed method performs better compared to just using Network Access Control or Application Layer Access control

32 © NEC Corporation 2023

Access workload

Access granularity

Limitations and Improvements

The False Negatives may contain essential access requests whose mis-control can affect business

SECURWARE 2023

Limitations and Improvements

A multi-threshold approach based on attributes of access can reduce the mis-control

Limitations and Improvements

A multi-threshold approach based on attributes of access can reduce the mis-control

Limitations and Improvements

A multi-threshold approach based on attributes of access can reduce the mis-control

Conclusion and Future Works

Summary of this proposal

Purpose: An optimal policy distribution mechanism based on Zero Trust principles to realize balance between workload and security trade-offs in CPS

Challenges: Decision of access control enforcement location in a highly dynamic environment is a non-trivial problem

Proposal: A distribution mechanism where granularity of access is adapted based on volatile environment conditions

Future Works: Analysis on real-environment

- Performance evaluation on a real-test bed system with focus on reproducibility, • consistency, latency and scalability
- Performance evaluation on variable policy sets where decisions vary from "All DENY" to "All ALLOW"

References

[1] E. Liu, Huawei Technologies Co Ltd, "Firewall control system based on a next generation network service and method thereof", U.S. Patent No. 7,987,503, Jul. 2011

[2] B. Alzahrani, , and N. Fotiou, "Enhancing internet of things security using software-defined networking". Journal of Systems Architecture, 110, 101779, Nov 2020.

[3] C. Tang, X. Fu, and P. Tamg, "Policy-Based Network Access and Behavior Control Management", IEEE 20th International Conference on Communication Technology (ICCT), vol. 20, pp. 1102-1106, Oct 2020.

[4] Z. Feng, P. Zhou, Q. Wang, and W. Qi, "A Dual-layer Zero Trust Architecture for 5G Industry MEC Applications Access Control", IEEE International Conference on Electronic Information and Communication Technology (ICEICT), vol. 5, pp. 100-105, Aug 2022.

SECURWARE 2023

Thank you everyone for your time.

\Orchestrating a brighter world **NEC**

Orchestrating a brighter world

