

INTERNET2023

BBR Performance over Variable Delay Paths on Multipath TCP Video Streaming

Masayoshi Kondo, Dirceu Cavendish Daiki Nobayashi, Takeshi Ikenaga

Kyushu Institute of Technology, Japan kondo.masayoshi146@mail.kyutech.jp {nova, ike}@ecs.kyutech.ac.jp

Resume

Masayoshi Kondo

- Second-year master's student
- Kyushu Institute of Technology, Japan
- kondo.masayoshi146@mail.kytuech.jp
- Field of StudyMPTCP
 - Transport Protocol

Introduction #1

The demand of video streaming has exploded

Mobile video traffic represents a large portion of overall internet traffic.

GLOBAL APPLICATION CATEGORY TRAFFIC SHARE

	Rank Change	Category	Downstream	Upstream
1	-	Video Streaming	48.9%	19.4%
2	-	Social Networking	19.3%	16.6%
	2	Web	13.1%	23.1%
4	-1	Messaging	6.7%	20.4%
5	-	Gaming	4.3%	1.9%
6	-2	Marketplace	4.1%	1.2%
7	2	File Sharing	1.3%	6.6%
8	-1	Cloud	1.1%	6.7%
9	-3	VPN and Security	0.9%	3.9%
10	-	Audio	0.2%	0.2%

Distribution of global monthly mobile data volume

*https://www.statista.com/statistics/383715/global-mobile-data-traffic-share/

*https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/2021/Phenomena/MIPR%20Q1%202021%2020210510.pdf

Introduction #2

Video streaming over mobile network

- High speed and broadband wireless access: 4G/5G/Wi-Fi
- Mobile devices
 - are becoming more sophisticated and have multiple wireless interfaces.
 - switching between multiple interfaces dynamically

These wireless interfaces can be used simultaneously to enable efficient and redundant communications.

Introduction #3

Multipath TCP (MPTCP)

- using multiple paths simultaneously.
- can improve the throughput for applications
 - can guarantee redundancy

MPTCP can improve TCP performance

≮

MPTCP performance is determined by two things

- MPTCP scheduler
- MPTCP congestion control

Video streaming over MPTCP #2

MPTCP scheduler

- determines a path to forward packets
- MPTCP congestion control
 - adjusts congestion window (cwnd) size as well as conventional TCP congestion controls

Video streaming over MPTCP #3

⋘

MPTCP scheduler

- determines a path to forward packets
- MPTCP congestion control
 - adjusts congestion window (cwnd) size as well as conventional TCP congestion controls

Head of Line Blocking #1

Head of Line Blocking(HOL blocking)

HOL blocking occurs when data already delivered at the receiver is waiting for additional packets that are blocked at another sub-flow, potentially causing incomplete or late frames to be discard at the receiver.

Head of Line Blocking #2

 At the receiver, video frames cannot be recovered due to HOL blocking, resulting in poor video quality.

MPTCP Congestion Control #1

MPTCP Congestion Control

determine congestion window size independently for each subflow.

- Loss-based algorithm as default TCP of the Linux operating system.
- Use the cubic function to adjust cwnd.

BBR

- New delay-based congestion control algorithm
- constantly monitoring throughput and RTT, also adjust the data transmission rate while understanding the relationship between the amount of transmission data and RTT.
- At the end of Bandwidth Delay Product (BDP) estimation period of 10s, cwnd is reduced to 4 packets and estimation is started again after 200ms.
- These steps are repeated to update BDP as required by the state of the transport path characteristics.

Important factors in video streaming over MPTCP

- Determination of a path to forward packets for MPTCP Scheduler
- MPTCP Congestion Control for each sub-flow

Previous Research

We proposed various schedulers to improve video quality and evaluated them in combination with various congestion control.

Previous Research: MPTCP Proposed Schedulers

Default Scheduler (Linux implementation)

- Low RTT First (LRF) selects the path with smaller RTT
- Proposed schedulers
 - Throughput-based
 - Largest Packet Credits (LPC)
 - Largest Estimated Throughput (LET)
 - Reducing sub-flow switching-based
 - Greedy Sticky (GR-STY)
 - Throughput Sticky (TP-STY)
 - Throughput RTT Sticky (TR-STY)

Previous Research: Variable Delay Paths on MPTCP Video Streaming

The reason for dynamically varying packet loss on Wi-Fi path.

Video streaming in mobile networks changes the packet loss rate of the Wi-Fi path as the Mobile devices moves.

Previous Research: Combination of scheduler and congestion control

We have proposed various schedulers to improve video quality.

We also evaluated the combination of the proposed scheduler and congestion control in a <u>variable packet loss</u> environment.

We have confirmed that

- the video quality varies with the combination of scheduler and congestion control [1].
- BBR video quality does not degrade in environments with variable packet loss [2].
- [1] M. Kondo et al., "Path Schedulers Performance on Cellular/Wi-Fi Multipath Video Streaming," IARIA 13th International Conference on Evolving Internet, pp. 10-15, July 2021.
- [2] M. Kondo et al., "Evaluation of MPTCP with BBR Performance on Wi-Fi/Cellular networks for Video Streaming," IARIA 14th International Conference on Evolving Internet, pp. 6-11, May 2022.

Previous Research: Combination of scheduler and congestion control

We have proposed various schedulers to improve video quality.

We also evaluated the combination of the proposed scheduler and congestion control in <u>a variable packet loss environment</u>.

But, since BBR is a BDP based algorithm,

In an environment with variable delay, video quality can be degraded.

- the video quality varies with the combination of scheduler and congestion control [1].
- BBR video quality does not degrade in environments with variable packet loss [2].
- [1] M. Kondo et al., "Path Schedulers Performance on Cellular/Wi-Fi Multipath Video Streaming," IARIA 13th International Conference on Evolving Internet, pp. 10-15, July 2021.
- [2] M. Kondo et al., "Evaluation of MPTCP with BBR Performance on Wi-Fi/Cellular networks for Video Streaming," IARIA 14th International Conference on Evolving Internet, pp. 6-11, May 2022.

Low RTT First (LRF) scheduler

- MPTCP default scheduler (Linux implementation)
- selects the path with smallest RTT among paths with congestion window space for new packets.

Low RTT First (LRF) scheduler

- MPTCP default scheduler (Linux implementation)
- selects the path with smallest RTT among paths with congestion window space for new packets.

TCP BBR

- adjust cwnd based on BDP.
- increases cwnd on routes with large delay.

Combination of LRF scheduler and BBR

This combination can degrade video quality due to poor scheduling.

Objective

Video streaming over MPTCP with TCP BBR

- This combination can degrade video quality due to poor scheduling.
- We combine the LRF scheduler with CUBIC and BBR to evaluate their performance in a delayvarying environment.

We evaluate MPTCP video streaming with BBR

Experimental Environment

- HTTP apache video server is connected to two routers
- VLC video client is connected to LTE base station and router1.
- We set emulator between server and router1, router2
- Since the bandwidth of IEEE 802.11a is sufficiently large for the bit rate of video, we have adopted 802.11a as the wireless LAN interface.

Video/network Settings

Table 1: Video Settings

U	
Video size	113 MBytes
Video Rate	5.24 Mb/s
Playout time	3 mins
Encoding	MPEG-4
Video Codec	H264 AVC
Audio Codec	MPEG-4 AAC

Table 2: MPTCP Settings

MPTCP Schedulers	LRF(default)
MPTCP Variants	CUBIC, BBR

Experimental Scenarios

We use network emulator

- We set variable delay for Wi-Fi path only.
- We set up our scenario based on the BBR's BDP estimation period (10s).
 - Scenario A: A delay cycle is <u>longer</u> than the estimation period.
 - Scenario B: A delay cycle is the <u>same</u> as the estimated period.
 - Scenario C: A delay cycle is <u>shorter</u> than the estimated period.

Performance evaluation index

Video Performance

Picture discard

Number of frames discarded by the video decoder

Buffer underflow

Number of buffer underflow events ad video client buffer

- Transmission Performance
 - Throughput
 - cwnd each sub-flow

Scenario A : Video Performance

Path properties

- Wi-Fi : BW = 3Mbps, RTT = 2 120ms (delay cycle 60s)
- LTE : BW = 3Mbps, RTT = 80ms
- Figures report on video streaming buffer underflow and picture discard performance.
- Video performance is excellent for both CUBIC and BBR.

A-1 : Buffer underflow (times)

A-2 : Picture discard (times)

Scenario A : Transmission Performance #1

Scenario A : Transmission Performance #2

CUBIC

which, being a loss-based variant, is insensitive to delay variations.

- BBR
 - We can see that BBR enforces a much reduced Wi-Fi cwnd than CUBIC, still delivering excellent video performance.
 - BBR cwnd size tracks nicely delay cycles.

Scenario B : Video Performance

Path properties

- Wi-Fi : BW = 3Mbps, RTT = 2 120ms (delay cycle 20s)
- LTE : BW = 3Mbps, RTT = 80ms
- Video performance degrades for both TCP variants, with BBR delivering less buffer underflows and more picture discards than CUBIC.

B-1 : Buffer underflow (times)

B-2 : Picture discard (times)

Scenario B : Transmission Performance #1

Scenario B : Transmission Performance #2

CUBIC

- which, being a loss-based variant, is insensitive to delay variations.
- ◆ BBR
 - enforces a much reduced Wi-Fi cwnd than CUBIC, still tracking delay cycles nicely.

Scenario C : Video Performance

Path properties

- Wi-Fi : BW = 3Mbps, RTT = 2 120ms (delay cycle 10s)
- LTE : BW = 3Mbps, RTT = 80ms
- Video performance degrades significantly for BBR, whereas CUBIC delivers video performance comparable with previous scenario.

C-1 : Buffer underflow (times)

Scenario C : Transmission Performance #1

 BBR delivering a much reduced level of Wi-Fi throughput than CUBIC, and not being able to compensate enough with more LTE bandwidth than CUBIC.

Scenario C : Transmission Performance #2 📈

CUBIC

which, being a loss-based variant, is insensitive to delay variations.

- BBR
 - performance degradation. BBR is no longer able to track delay cycles as before, remaining "stuck" at a small cwnd of 15 packets.
 - Since the delay cycle in Scenario C is 10s, the estimation is not performed correctly during ProbRTT and cwnd does not increase.

Conclusion

- We evaluated the impact of using a standard scheduler, CUBIC, and BBR on video quality in an environment with variable latency.
- We have shown that on rapidly varying path delay scenario, BBR TCP variant delivers a degraded video streaming performance.
- Under this fast delay variation, BBR remains at a shrunk congestion window situation that effectively reduces considerably the path throughput.
- Therefore, a combined improvement of the scheduler and congestion control algorithm to improve the video quality is a future challenge.