Architecting Digital Ecosystems

March 16, 2023

The Fifteenth International Conference on Evolving Internet INTERNET 2023 March 13, 2023 to March 17, 2023 - Barcelona, Spain

Prof.dr. Bedir Tekinerdogan

Wageningen University & Research Chair Information Technology Wageningen, The Netherlands

<u>bedir.tekinerdogan@wur.nl</u>

- https://linkedin.com/in/bedir
- ⁶ <u>https://www.researchgate.net/profile/Bedir-Tekinerdogan</u>

Background

Experience

- Wageningen UR (University & Research centre) Full-time · 7 vrs 11 mos
- . Full Professor and Chair Information Technology Jan 2015 - Present · 7 yrs 11 mos Wageningen, The Netherlands

I am the chairholder of the Information Technology Group, which now consists of 15 staff members, 5 Postdocs, and more than 20 PhD candidates. I am responsible for managing and leading the group wit ...see more

Full Professor and Chair Business Science Section .

Dec 2021 - Present · 1 yr Wageningen, Gelderland, Netherlands

Besides my role as chair of the Information Technology group, I also serve as the chair of the Business Science section at Wageningen University & Research. The section consists of five strong chair groups incl ...see more

Section Business Science (SBS)

Management Team Member - 4TU.NIRICT 4TU.

4TU.Federation 2017 - Present · 5 yrs 11 mos

4TU.NIRICT is the Netherlands Institute for Research on ICT and comprises all ICT research of the universities of technology in the Netherlands. It is one of the centers of the 4TU...

Faculty Professor

Bilkent University Sep 2008 - Dec 2014 · 6 yrs 4 mos Ankara, Turkey

• received rank of Associate Professor from the Turkish Inter-University Council (2010) IBM Faculty Award nomination (2009, 2010)

Assistant Professor University of Twente

Aug 2003 - Sep 2008 · 5 yrs 2 mos

My research and education activities were focused on software architecture and related topics including aspect-oriented software architecture design, software architecture modeling, software architectur ...see more

Sep 2002 - Jul 2003 · 11 mos

This was a kind of a sabbatical leave for me. At Bilkent University I have introduced and given the courses Software Architecture Design (2), Aspect-Oriented Software Development, and the course Object-- ...see more

Edge Compl EDGE 2018

← Education

University of Twente

University of Twente

1995 - 2000

1989 - 1994

1982 - 1988

1976 - 1982

...see more

PhD, Computer Science/ Software Engineering

MSc, Computer Science - Software Engineering

Isala College, Silvolde, The Netherlands High School (Academic Stream)

PhD Thesis: Synthesis-Based Software Architecture Design

MSc Thesis: The Design of an Object-Oriented Framework for Atomic Transactions

1988 - Isala College High School Graduation Ceremony

Atheneum-DiplomaUitreiking.jpg

Primary School "De Dobbelsteen", Ulft, The Netherlands

In World's Top 2%

Scientists ranking list

Cited by		VIEW ALL
	All	Since 2018
Citations	5353	3129
h-index	38	28
i10-index	128	69

Re

Research Interest Score	
Citations	
h-index	

3.333

Wageningen University & Research

- Focus on *life sciences*, which comprises the branches of science that involve the scientific study of **living organisms**,
- like plants, animals, and human beings.

prof.dr.ir. B (Bedir) Tekinerdogan Professor

INF – 2023

PhD Candidates

HG (Havva) Gürbüz

Promovendus

Promovendus

Añazco

MSc

Research and Teaching Staff

dr. T (Tarek) Alskaif C (Cagatay) Catal Assistant Professor Externe medewerker

Kassahun

Moerland

Lecturer

Verdouw

MSc BSc

Researcher

dr.ir. A (Avalew) drs. MR (Mark)

dr. Q (Qingzhi) Liu Kramer Assistant Professor Assistant Professor

ir. G (Gerard)

dr. SA (Sjoukje) Osinga Assistant Professor

Developer Digital Learning Material /

Docent

ir. MA (Maarten) Zijp dr. KE (Kwabena) Bennin Universitair docent

prof.dr.ir. GJ (Gert

Personal Professor

Artificial Sociality

dr. JR (Joao) Pereira

Assistant Professor

Valente

Jan) Hofstede

dr. WSK (Will) Hurst

Assistant Professor

dr. Y (Yara) Khaluf

Assistant Professor

in Data Science

dr. Ö (Önder) Babur Assistant Professor

MD (Dogu) Cengiz Functioneel

ir. N (Natasja)

Ariesen

Lecturer

M (Maria Del Mar) Ariza Sentís MSc Onderwijs-/Onderz...

S (Sander) Breevaart BSc Docent

To be hired Assistant Professor

Postdocs

G (Giulia) Salvini

DLO Onderzoeker

R (Romina) Rodela

PhD

Coskun-Setirek Onderzoeker Postdoctoral Researcher

dr. S (Sergio) Velez Martin Externe medewerker Onderzoeker

To be hired To be hired

Demirel

DR (Dilli) Paudel MSc ir. HJM (Joep)

(external),

Tummers

PhD Candidate

Promovendus

G (Gonzalo) Mier LZH (Laura) Jansen Muñoz MSc PhD candidate

Avamga MSc

Promovendus ,

Promovendus

Promovendus

C (Chenglong)

Zhang

M (Mingzhu) Du MSc

Promovendus Promovendus . Promovendus

To be hired

To be hired

C (Cigdem) Avci PhD Candidate

Promovendus

Deputy Administrator / Secretary

Möller-de Haas

Secretary

L (Laura) Simon Deputy Administrator

Information Technology

Our mission is to advance the state-of-the-art of smart systems and system of systems engineering to support innovations in the life sciences application domains. Hereby, we focus on software engineering, data science, and socio-technical systems engineering.

Promovendus Promovendus . Promovendus

Z (Zhen) Cao Msc

To be hired

Ravestein

Secretary

A system cannot be known just by considering the elements of which the system is made...

System?

System – Definition

 "A system is a set of interacting or interdependent components forming an integrated whole".

- Wikipedia

 "A set of things working together as parts of a mechanism or an interconnecting network."

- Oxford dictionary

- an entity which maintains its existence through the mutual interaction of its parts.
 - www.systems-thinking.org

"Systems thinking is a discipline for seeing wholes. It is a framework for seeing interrelationships rather than things, for seeing patterns of change rather than static snapshots" - Peter Senge

Ross D. Arnold, Jon P. Wade. A Definition of Systems Thinking: A Systems Approach, Procedia Computer Science 44 (2015) 669 – 678.

System of **Systems**

System Scale

System-of-Systems

 A system-of-systems is defined as a set or arrangement of systems that results when independent and useful systems are integrated into a larger system that delivers unique capabilities

more than the sum of its parts

System-of-Systems Characteristics

- **Operational independence** of constituent systems
- Managerial independence of constituent systems
- **Emergent behaviour** as a result of the interacting constituent systems in the wider whole
- Evolutionary development of the SoS
- **Geographical distribution** of the constituent systems

System, System of Systems

Purpose Elements Interconnectedness

Operational independence Managerial independence Emergent behavior Evolutionary development Geographical distribution

SoS-Logical Configuration

Social System

Logistics Management/Supply Chains

System of Systems - Examples

System	System-of-Systems	
Technological		
Airplane	Air Traffic Control System	
Car, Road	Integrated Traffic System	
Train	Rail Network	
Smart Metering, Wind Turbine	Smart Grid	
Computer	Distributed System	
Farm	Integrated Precision Farming System	
Building	Town, Shopping Mall	
Social		
Town Council	Government, United Nations,	
	European Union	
Family, Social Group	Town, Nation	
Student, Teacher, School	Education System	
Company	Enterprise, Stock Market	
Natural		
Animal	Herd	
Plant	Forest	
Weather, RI	Eco-system	
Star	Solar System	

B. Tekinerdogan, "Multi-Dimensional Classification of System-of-Systems," 2019 14th Annual Conference System of Systems Engineering (SoSE), 2019, pp. 278-283, doi: 10.1109/SYSOSE.2019.8753841.

SoS Classification based on Management Criteria

B. Tekinerdogan. Engineering Connected Intelligence: A Socio-Technical Perspective. Wageningen University, 2017

Multi-Dimensional Classification of SoS

B. Tekinerdogan, "Multi-Dimensional Classification of System-of-Systems," *2019 14th Annual Conference System of Systems Engineering* (*SoSE*), 2019, pp. 278-283, doi: 10.1109/SYSOSE.2019.8753841.

Computing - Stronger, Faster, Cheaper...

https://www.linkedin.com/pulse/digitalization-past-present-future-bedir-tekinerdogan/

Pervasive Computing

Big Data

Systems get Smarter, and Connected

B. Tekinerdogan. Engineering Connected Intelligence: A Socio-Technical Perspective, Wageningen University, isbn 978-94-6343-049, doi 10.18174/401115, 2017

Prof.dr. Bedir Tekinerdogan Insegural lecture spon taking up the position of Professor of Information Technology at Wagesingen University & Research on 2. February 2017

Physical Space and,...Cyberspace

Cyber-Physical System of Systems

Ecosystem...

- Ecosystem or Ecological System is a community of living organisms in conjunction with the physical environment interacting as a system.
- These biotic and abiotic components are regarded as linked together through nutrient cycles and energy flows.
- they can be of any size but usually encompass specific, limited spaces.

Symbiosis

(sýn, "together", bíōsis, "living" is any type of a close and long-term biological interaction between biological organisms)

Ecosystem - Characterisics

- **Biodiversity**: An ecosystem is composed of a wide variety of living organisms that interact with each other and with their environment.
- **Energy flow**: Ecosystems rely on a continuous flow of energy, usually from the sun, to sustain the life of its organisms.
- **Nutrient cycling**: Ecosystems also rely on the cycling of nutrients to maintain the health of the community.
- Adaptation: Ecosystems are constantly changing and adapting to their environment.
- **Interdependence**: The organisms within an ecosystem are interdependent on one another for survival. The loss of one species can have a significant impact on the entire ecosystem.
- Self-regulation: Ecosystems have the ability to self-regulate and maintain balance through feedback mechanisms. This ensures that the ecosystem remains healthy and sustainable over time.

Ecosystem - Relations

- **Predation**: This relationship involves one organism (the predator) killing and consuming another organism (the prey) for food. This relationship is common in many ecosystems and plays a critical role in maintaining balance and regulating populations.
- **Competition**: Competition occurs when two or more organisms require the same resources, such as food, water, or shelter. This can lead to a struggle for survival and often results in one organism outcompeting the other.
- **Symbiosis**: Symbiotic relationships occur when two or more organisms live together in a close and mutually beneficial relationship.

Ecosystem – Symbiotic Relations

- Mutualism: Both organisms benefit from the relationship (++).
 - For example, bees and flowers have a mutualistic relationship where bees pollinate the flowers and the flowers provide the bees with nectar.
- **Commensalism**: One organism benefits from the relationship, while the other is neither helped nor harmed (+0)
 - For example, birds building nests in trees or using the branches to rest is a form of commensalism.
- **Parasitism**: One organism benefits from the relationship at the expense of the other (+-)
 - For example, ticks and fleas are parasites that feed on the blood of their host animals, which can lead to disease and other health problems.

Business Ecosystem

- a dynamic group of
- largely independent economic players
- that create products or services
- that together constitute a coherent solution

U. Pidun, M. Reeves, and M. Schüssler, Do you need a business Ecosystem?, Boston Consulting Group

Digital Ecosystem

- A digital ecosystem refers to the interconnected network of digital devices, applications, and services that facilitate the creation, distribution, and consumption of digital content.
- This ecosystem involves the interaction between different digital technologies, software applications, and platforms, all of which work together to enable businesses and individuals to access, share, and use information in a digital format.

Types of Business/Digital Ecosystem

- Solution Ecosystem: aims at creating a coherent solution. Core firm coordinates the innovation activities of the complementors, ensures continuous improvement of the overall product, and safeguards fair value sharing among ecosystem members
- Transaction ecosystem: A (digital) platform is used to integrate players in a two-sided market to establish an ecosystem.
- **Hybrid system**: The environment that combines features of a solution ecosystem with a transaction ecosystem.
Solution Ecosystem

- has a core firm that orchestrates the offerings of several independent complementors
- Example:

Smart home (key innovation) combining smart solutions (complementors) such as lighting, entertainment, and security products and services),

https://www.bcg.com/publications/2019/do-you-need-business-ecosystem

Solution Ecosystem

Bedir Tekinerdogan

Platform-Based Ecosystem

Platform-Based Ecosystem

Precision Farming

- Precision agriculture (PA) is a farming management concept based on observing, measuring and responding to inter and intrafield variability in crops.
- define a decision support system for whole farm management with the goal of optimizing returns on inputs while preserving resources.
- an application of advanced digital technologies
 - Robotics
 - Drones and UAV
 - Internet of Things
 - Cloud Computing
 - Machine Learning/Deep Learning
 - Software Engineering

Smart Farming System of System/Ecosystem

Farm Management Information System

- A key element of smart farming ecosystem
- Management information system (MIS) is an information system used for decision-making, and for the coordination, control, analysis, and visualization of information in an organization.
- Involves people, processes and technology in an organizational context.
- the ultimate goal of the use of a management information system is to increase the value and profits of the business
- Farm management information systems (FMIS) is an MIS that supports the automation of data acquisition and processing, monitoring, planning, decision making, documenting, and managing the farm operations.

Farm Management Information Systems/Ecosystem Publications

Computers and Electronics in Agriculture Volume 157, February 2019, Pages 189-204

Review

Obstacles and features of Farm Management Information Systems: A systematic literature review

J. Tummers, A. Kassahun, B. Tekinerdogan ዳ 🖾

Computers and Electronics in Agriculture Volume 165, October 2019, 104939

Original papers

Architecture framework of IoT-based food and farm systems: A multiple case study

Cor Verdouw ^{a, b} A 🖾, Harald Sundmaeker ^c, Bedir Tekinerdogan ^a, Davide Conzon ^d, Teodoro Montanaro ^d

Der Springer Link

Depringer Link

Open Access | Published: 11 December 2018

Architecture design approach for IoT-based farm management information systems

<u>Ö. Köksal</u> ^I & <u>B. Tekinerdogan</u>

Precision Agriculture 20, 926–958(2019) Cite this article

0

Open Access | Published: 01 June 2020

Reference architecture design for farm management information systems: a multi-case study approach

J. Tummers, A. Kassahun & B. Tekinerdogan

Precision Agriculture (2020) Cite this article

Architecture Design of FMIS

Der Springer Link

Open Access | Published: 11 December 2018 Architecture design approach for IoT-based farm management information systems

<u>Ö. Köksal</u> ^I & <u>B. Tekinerdogan</u>

Precision Agriculture 20, 926–958(2019) Cite this article

Der Springer Link

Open Access | Published: 01 June 2020

Reference architecture design for farm management information systems: a multi-case study approach

J. Tummers, A. Kassahun & B. Tekinerdogan

Precision Agriculture (2020) Cite this article

Reference Architecture vs. Application Architecture

IoT Reference Architecture

Reference Architecture vs. Application Architecture

IoT-based FMIS Architecture Design Approach

Der Springer Link

Open Access | Published: 11 December 2018

Architecture design approach for IoT-based farm management information systems

<u>Ö. Köksal</u> 🗠 & <u>B. Tekinerdogan</u>

Precision Agriculture 20, 926–958(2019) Cite this article

Feature-Oriented Domain Modeling

- A feature model represents the common and the variable features of products and the dependencies between the variable features.
- Feature:
 - a distinctive property of a concept (domain model)
 - user visible characteristic of a system (requirements).
- A feature diagram consists of a set of nodes, a set of directed edges, and a set of edge decorations.

Feature Model for IoT-Based FMIS

FMIS Decomposition View

FMIS Layered View

FMIS Deployment View

Case Study – Smart Wheat Production

Obstacles of FMIS

Computers and Electronics in Agriculture Volume 157, February 2019, Pages 189-204

Review

Obstacles and features of Farm Management Information Systems: A systematic literature review

J. Tummers, A. Kassahun, B. Tekinerdogan 🙁 🖾

- RQ1: What are the current FMISs described in the literature?
 - RQ1.1: Which domains are supported?
 - RQ1.2: Which modeling approaches are applied?
 - RQ1.3: What are the delivery models?
 - RQ1.4: Who are the identified stakeholders?
- RQ2: What are the features of existing FMISs?
- RQ3: What are the obstacles to existing FMISs?

Source	After automated and manual search	After applying selection criteria	After reading complete study and quality assessment
IEEE Xplore	111	20	7
ACM Digital Library	102	10	5
Wiley Interscience	120	1	0
Science Direct	138	7	6
Springer	135	6	1
ISI Web of Knowledge	422	14	7
Manual search	20	20	12
Total	1048	78	38

Overview	of	search	results	and	study	selection.
01011101	01	ocuren	resurts	unu	orady	bereetion.

Obstacles of Farm Management IS/Ecosystem

- Standardized data formats: Causes problems with the interoperability between different systems and components.
- **System integration**: FMISs and their components do not integrate with each other easily. Results to problems with interchangeability between applications and platforms.
- Adoption rate of FMIS: The adoption of new technologies in agriculture is rarely instantaneous and multiple factors influence the decision-making processes and can therefore be a result of multiple obstacles.
- **Cost of FMIS**: Farmers find FMISs too expensive, or they are not able to see the profitability potential of an FMIS.
- **Incomplete FMIS**: Multiple FMISs are specialized for one specific task on the farm. However, these systems are therefore missing features that will cause the farmer to use multiple FMISs, instead of one FMIS that can provide in all needs.
- **Understandability**: Current FMISs are not always easy to understand and use for farmers, due to difficult user interfaces or other factors that make them complex.
- Data size: The accumulation of data over the years is seen as a concern
- **Connection to internet**: Some FMISs are only accessible with an active internet connection; this connection is however not always reliable in more rural areas.
- **Insufficient farmer skills**: Farmers frequently have a low level of education, and therefore farmers are not always able to obtain the full potential of FMISs.
- Language and regional: Sometimes FMISs are only available in one language. Furthermore, there are big regional differences between countries concerning agricultural practices; FMISs can therefore not always foresee in all farmers needs due to these differences.
- Security: There are currently concerns about the security and privacy of the data that is used in the FMIS.

Health Management Information Ecosystem

Radboudumc

Health Management Ecosystem

 health management information systems (FMIS) is an MIS that supports the automation of data acquisition and processing, monitoring, planning, decision making, documenting, and managing the health operations.

Health Management Information Systems

Computers in Bie and Medicin

R. A

Computers in Biology and Medicine 137 (2021) 104785

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

Obstacles and features of health information systems: A systematic literature review

J. Tummers^a, B. Tekinerdogan^{a,*}, H. Tobi^b, C. Catal^c, B. Schalk^d

^a Information Technology Group, Wageningen University & Research, Hollandseweg 1, 6706, KN, Wageningen, the Netherlands

^b Biometris, Wageningen University & Research, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands

^c Department of Computer Science and Engineering, Qatar University, 2713, Doha, Qatar

^d Department of Primary and Community Care, Radboud University Medical Center, P.O. Box 9101, Route 68, 6500, HB, Nijmegen, the Netherlands

ARTICLE INFO	A B S T R A C T
Keywords: Health information system Systematic literature review Features of HIS Obstacles to HIS State-of-the-att Electronic health record	Background: Currently many healthcare systems are supported by an increasing set of Health Information Sys- tems (HISs), which assist the activities for multiple stakeholders. The literature on HISs is, however, frag- mented and a solid overview of the current state of HISs is missing. This impedes the understanding and char- acterization of the required HISs for the healthcare domain. <i>Methods:</i> In this article, we present the results of a Systematic Literature Review (SLR) that identifies the HISs, their domains, stakeholders, features, and obstacles. <i>Results:</i> In the SLR, we identified 1340 papers from which we selected 136 studies, on which we performed a full- text analysis. After the synthesis of the data, we were able to report on 33 different domains, 41 stakeholders, 73 features, and 69 obstacles. We discussed how these domains, features, and obstacles interact with each other and presented suscessions to overcome the identified obstacles. We reconsized five groups of obstacles: technical

problems, operational functionality, maintenance & support, usage problems, and quality problems. Obstacles from all groups require to be solved to pave the way for further research and application of HISs. *Conclusion*: This study shows that there is a plentitude of HISs with unique features and that there is no consensus

on the requirements and types of HISs in the literature.

 Tummers et al. BMC Med Inform Decis Mak
 (2021) 21:210

 https://doi.org/10.1186/s12911-021-01570-2

BMC Medical Informatics and Decision Making

RESEARCH

Open Access

Designing a reference architecture for health information systems

Joep Tummers^{1*}, Hilde Tobi², Cagatay Catal³ and Bedir Tekinerdogan¹

Abstract

Background: Healthcare relies on health information systems (HISs) to support the care and receive reimbursement for the care provided. Healthcare providers experience many problems with their HISs due to improper architecture design. To support the design of a proper HIS architecture, a reference architecture (RA) can be used that meets the various stakeholder concerns of HISs. Therefore, the objective of this study is to develop and analyze an RA following well-established architecture design methods.

Methods: Domain analysis was performed to scope and model the domain of HISs. For the architecture design, we applied the views and beyond approach and designed the RA's views based on the stakeholders and features from the domain analysis. We evaluated the RA with a case study.

Results: We derived the following four architecture views for HISs: The context diagram, decomposition view, layered view, and deployment view. Each view shows the architecture of the HIS from a different angle, suitable for various stakeholders. Based on a Japanese hospital information system study, we applied the RA and derived the application architecture.

Conclusion: We demonstrated that the methods of the software architecture design community could be used in the healthcare domain effectively and showed the applicability of the RA.

Keywords: Electronic patient dossier, Reference architecture, Software architecture, Health information systems, Unified modeling language

Health Information System of Systems

Obstacles and Features of HMIS

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

HMIS Domains

Hospital	49	Allergy and immunology	
Primary care	20	Brain disorder	
Pediatrics	8	Cardiology	
Infectious disease care	7	Community health	
Laboratory	5	Nursing	
Medication	5	Surgery	
Outpatient care	5	Telehealth	
Radiology	5	Alternative medicine	
Diabetes care	4	Care for homeless	
Care for chronically ill	3	Emergency care	
Dentistry	3	Geriatric care	
Maternal-fetal medicine	3	Ophthalmology	
Mental health	3	Public health unit	
Neurology	3	Rare diseases	
Oncology	3	Telemedicine	
Palliative care	3	Transmural care	
Pulmonology	3		

HMIS Stakeholders

J		
	Physician	84
	Nurse	63
	Medical specialist	43
	Administrative Staff	29
	Pharmacist	19
	Laboratory technician	16
	Therapist	14
	Medical assistant	13
	Regulator/policy maker	9
	Resident physician	7
	Secretary	7
	Educator	6
	Healthcare consultant	6
	Data clerk	5
	Dentist	5
	Receptionist	4
	Social worker	3
	Biomedical engineer	2
	Hospice staff	2
	Alternative medicine practitioner	1

In-direct system users	Patient			
	Healthcare manager			
	Researcher			
	Patients family/relatives/representatives	5		
	Student	5		
syst	Counselor	2		
ect	System administrator			
n-dii	Healthcare association	1		
-	Insurance company			
	National expert			
	Health promotion worker	1		
	IT-staff	22		
Technical stakeholder	Healthcare informatician	18		
	System developer			
	Software vendor			
stake	Statistician			
cals	Technical staff			
chni	IT expert			
Те	System manager			
	Technical writer			
	External system	1		

HMIS Features

-					100
50	ort	or	cr	OCI	fic
DC		01	3		110

-			
Sector specific		General features	
Medication recording	68	Reporting	57
Patient record	62	Order management	47
Lab test results	54	Reminders and alerts	45
Clinical decision support and guidelines	47	Administration and finance	43
Diagnosis/clinical assessment	47	Video and image analysis	40
Patient tracking and monitoring	41	Documentation	39
Clinical notes	37	Appointments and scheduling	33
Treatment planning	33	Recording demographics	28
Recording vital signs	32	Problem list	27
Laboratory functionality	31	Internal communication	27
Specialist care feature	28	Data visualization	20
Medication prescription	26	Data import and export	20
Disease monitoring	25	Data and record exchange	20
Patient admission and registration	24	Staff and patient education	17
Radiology management	24	Data storage	17
Patient health status registration	22	External communication	15
Allergy recording	19	Data and system integration	14
Patient care overview and summaries	19	Security and risk	12
		management	
Immunization and vaccination	16	Inventory management	11
registration	45	Description	10
Making discharge summaries Consultation documentation	15 14	Data search	10 9
Referrals	-	Workflow support	9
Patient portal	14 14	Quality control Authentication	7
Pharmacy functionality	14	Task management	6
Recording blood values	10	Remote access	6
Medical forms and questionnaires	9	Human resource mgmt.	6
Medical data analysis	8	Evaluation and benchmarking	5
Recording symptoms	8	Sensor management	3
Care coordination	5	Voice control	2
Clinical measurements	5	Setting goals	2
Food management	5	Prognosis	2
Death registrations	4	Help function	2
Telehealth	4	To do list	1
Visit management	3	Data sharing	1
Family planning	1	Data Sharing	
Informing patient and family	1		
Lifestyle suggestions	1		
Directive suggestions	1		

1

Pain recording

Obstacles of HMIS

	Poor interface design	27		Limited use	36
	Lack of standards	24		Time consuming to use	21
	Poor security	19		Lacking user training	21
	Lack of data and system integration	18		Poor system usability	21
	Hardware/Power problems	16		High system complexity	20
echnical problems	Poor privacy	14		Uneducated users	15
	Poor data and system availability	13		Data and system inefficiency	13
	Performance problems	11		Duplicate documentation	10
	System limitations	10		Manual work	7
	Network problems	10	sme	Incorrect usage	6
JUIC	Poor hardware availability	10	oble	Navigation issues	6
ec	Poor data exchange	7	Usage problems	Low trust in system	6
	Poor system accessibility	7	sag	Low user satisfaction	5
	Lacking infrastructure			User disagreement with system	4
	Data and system reliability	6		Finding data	4
	System down			Problems related to meeting user needs	4
	System installation problems	2		Information overload	2
	Poor scalability	2		Lack of awareness	2
	Problems with data and system storage	1		Maximum use of system to usage	2
	Missing features	47		Low system usefulness	2
U	Bad fit with clinical workflow	17		Hygiene problems	1
Itur	Problems with specific features	14		Use of free text for registrations	1
Operational func.	Captures attention away from patients	12		Lack of data and system interoperability	24
bera	Requirement of multiple systems	6		Low data quality	21
ŏ	Need to work in unique and specific setting	5		Poor system development	12
	Poor working environment	4		Data and system inconsistencies	11
to	Lacking professional support	25	s	Data loss	10
intenance & Support	High system costs	23	problems	Faulty system	9
& SI	Poor communication	11	prof	Data input/output/Propagation problems	8
lce	Legal and bureaucratic problems	9	lity	Poor data integrity	4
enar	Lack of help and documentation	7	Quality	Low system accuracy	4
ainte	Poor system updates	5	-	Poor patient safety	2
Mai	Low trust in supplier	3		Fragmented data	2
				Medical error	2
		18		Poor system natural language	2
				Data interpretability	1

Interdisciplinary and Transdisciplinary Approach

Design Challenges – Digital Ecosystems

- Which domains are needed for digital ecosystems
- What are the stakeholders for each domain?
- What are the concerns?
- What are the required design viewpoints for digital ecosystems?
- Modeling approaches for digital ecosystems?
- Design Methods for digital ecosystem?
- Design Patterns/Tactics/Perspectives for digital ecosystems?
- Evaluation Method for digital ecosystems?
- Trade-off Analysis for digital ecosystems?
- Governance of digital ecosystems?
- Alignment of governance with systems/technology?
- Simulation of digital ecosystems?

Bedir Tekinerdogan

Conclusion

- A **system** is a set of interacting or interdependent components forming an integrated whole
- Increased level of scale and the interconnection of systems has led to the notion of system of systems
- Digitalization of systems has led to cyber-physical systems (of systems)
- An **ecosystem** is a system or system of systems with symbiotic relations of independent players that together constitute target a coherent solution
- a **business ecosystem** is a dynamic group of largely independent economic players that create products or services that together constitute a coherent solution
- Business ecosystems are increasingly currently IT-controlled leading to digital business ecosystems

Conclusion

- Many unsolved challenges can be identified for designing, operating, and maintaining (digital) business ecosystems
- **Design** of digital business ecosystems is one of the key artifacts that has a systemic impact on the overall ecosystem
- Existing system and system of systems engineering paradigms need to be enhanced to cope with the challenges of digital business ecosystems
- Designing and analyzing digital business ecosystems requires an interdisciplinary and transdisciplinary approach