
A review of time-memory
trade-off techniques

Liuteng, LiZelong

University of Jinan

Shandong province, China

Contact Email: 269810721@qq.com

Liuteng

He is currently studying in the school of

information science and engineering of Jinan

University in Shandong Province, China, and his

research direction is network security. This paper

mainly focuses on the research of rainbow trade-

off, a time-memory trade-off algorithm, and aims

to improve the efficiency of rainbow trade-off in

password attack.

The Cryptography Cloud Computing Power Center is jointly established by Shandong

Industrial Technology Research Institute and Jinan Blue Sword Junxin Information

Technology Co., Ltd.

Its core function is to play a driving role in industrial aggregation for the development of

cyberspace security, blockchain, and artificial intelligence industries in Shandong Province,

connect the digital economy industry chain, create a new engine for the conversion of old

and new kinetic energy, create a nationally influential information security and artificial

intelligence industry demonstration base, and form an information security industry

ecological community with a complete industrial chain and industrial advantages

What Is Time-Memory
Trade-Off?

01
PART

Time-Memory Trade-Off

Time-memory trade-off is a concept in computer science

and cryptography that refers to the balance between the

time taken to perform a computation and the amount of

memory space required to store precomputed data. This

trade-off arises in various algorithms and techniques,

particularly in cryptanalysis, where an attacker attempts to

recover a cryptographic key or password.

What is time-memory trade-off?

⚫ Time Complexity

This refers to the amount of time an algorithm

takes to perform a computation. It have a high

time complexity because they require a lot of

time to test each possibility.

⚫ Memory Complexity

This refers to the amount of memory space needed to

store data. Techniques like time-memory trade-off

involve precomputing hashes of many possible

passwords and storing them in a trade-off table.

Some Related Concepts

02
PART

Some related concepts

⚫ Reduction Function

A reduction function is a deterministic algorithm that

takes a hash value as input and produces a plaintext-

password as output. The purpose of the reduction

function is to reduce a large hash space (the set of all

possible hash values) into a smaller plaintext space

(the set of all possible passwords).

Example:

𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏

𝐻𝑒𝑟𝑒 𝑖𝑠 128𝑏𝑖𝑡𝑠 𝐻𝑎𝑠ℎ 𝑠𝑡𝑟𝑖𝑛𝑔 𝑎𝑠 𝑖𝑛𝑝𝑢𝑡

128 𝑏𝑖𝑡𝑠

8 𝑏𝑖𝑡𝑠

𝑇ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑠 8𝑏𝑖𝑡𝑠 𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡

The reduction function consistently maps
hash values to specific passwords. When
building trade-off table, attackers apply the
reduction function iteratively to generate a
chain of plaintext-passwords from a given
hash value.

Some related concepts

⚫ Pre-computation phase

The pre-computation phase involves generating the

precomputation table by creating precomputation chains

according to reduction function. The starting and ending

points of these precomputation chains are saved to form the

precomputation table. Finally, for ease of retrieval, the table

can be sorted based on the size of the ending points.

⚫ Attack phase

The actual attack phase includes three components:

generating precomputation chains, collision detection, and

precomputation chain reconstruction.

𝑛𝑜𝑑𝑒1

𝑛𝑜𝑑𝑒2

𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑛𝑑

𝑆𝑃𝑖 𝐸𝑃𝑖
𝐶

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑝𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑖𝑛𝑠:

𝑆𝑃𝑖 𝐸𝑃𝑖
𝐶

𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑖𝑛 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛:

Some related concepts

⚫ Collisions, Merging, and Loops

Collisions refer to the occurrence of the same node in two different chains, for example,𝑥𝑖,𝑎 = 𝑥𝑗,𝑏, where 𝑖 ≠ 𝑗.

Merging

Loops

If all nodes following the collision point in the precomputation phase
are the same, a merging occurs.

When multiple collisions occur in a chain, a loop occurs.

𝑥𝑖,𝑎

𝑥𝑗,𝑏

𝑥𝑖,𝑏

𝑥𝑖,𝑎

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑀𝑒𝑟𝑔𝑖𝑛𝑔 𝑎𝑛𝑑 𝐿𝑜𝑜𝑝𝑠

Time-Memory
Trade-Off

03
PART

Time-memory trade-off

⚫ Hellman Trade-Off

In 1980, Hellman introduced a classic time-memory trade-off method [6] for attacking the Data Encryption Standard (DES)
algorithm, a symmetric-key block cipher.

• Starting points (𝑆𝑃1, 𝑆𝑃2, 𝑆𝑃3, … , 𝑆𝑃𝑚) generate multiple

ending points(𝐸𝑃1, 𝐸𝑃2, 𝐸𝑃3, … , 𝐸𝑃𝑚) through t iterations.

But only the key-value(𝑆𝑃𝑖 − 𝐸𝑃𝑖) are stored in the Hellman

table.

𝑆𝑐ℎ𝑒𝑚𝑎𝑡𝑖𝑐 𝑜𝑓 𝐻𝑒𝑙𝑙𝑚𝑎𝑛 𝑇𝑟𝑎𝑑𝑒 − 𝑜𝑓𝑓

Time-memory trade-off

⚫ Hellman Trade-Off

Within the framework of the Hellman trade-off, we assume the presence of m table entries in each table, with each pre-
computed chain undergoing t iterations. We offer the probability of effectively locating the desired key within a specified table:

𝑃𝑠𝑖𝑛𝑔𝑙𝑒 ≥
1

𝑁
෍

𝑖=1

𝑚

෍

𝑗=0

𝑡−1

1 −
𝑖𝑡

𝑁

𝑗+1

Increasing the success rate of attacks using the Hellman trade-off usually entails the utilization of distinct G functions to
produce multiple Hellman tables. Assuming the existence of 𝑙 tables, the probability of successfully determining the target key
is as follows:

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ≥ 1 − (1 −
1

𝑁
෍

𝑖=1

𝑚

෍

𝑗=0

𝑡−1

1 −
𝑖𝑡

𝑁

𝑗+1

)

Hellman recommended setting 𝑚 = 𝑡 = 𝑙 = 𝑁1/3 , The total storage space required for the precomputation phase of the Hellman
trade-off is 𝑀 = 𝑚𝑙. The time complexity of the online phase can be represented as 𝑇 = 𝑡𝑙. resulting in a balanced trade-off
curve with the equation:

𝑇𝑀2 = 𝑁2

Time-memory trade-off

⚫ DP Trade-Off

Distinguishing Point (DP) method [7] in 1982. The DP trade-off involves introducing a discernible attribute into the key space
with a fixed probability of 1/t. Typically, this attribute is easy to detect, such as setting the first logt bits of an element to 0.

𝐷𝑃 𝑇𝑎𝑏𝑙𝑒 0

𝑆𝑃1
′ 𝐸𝑃100…0

𝑆𝑃2
′ 𝐸𝑃200…0

𝑆𝑃3
′ 𝐸𝑃300…0

𝑆𝑃𝑚
′ 𝐸𝑃𝑚00…0

𝐷𝑃 𝑇𝑎𝑏𝑙𝑒 1

𝑆𝑃1
′ 𝐸𝑃100…1

𝑆𝑃2
′ 𝐸𝑃200…1

𝑆𝑃3
′ 𝐸𝑃300…1

𝑆𝑃𝑚
′ 𝐸𝑃𝑚00…1

…

Precomputation phase, the average length of DP chains is 𝑡. Consequently, the total number of nodes covered by the 𝑚 DP chains is
𝑚𝑡.. Online phase, an average of t iterations is required to locate a DP point. Thus, the time complexity 𝑇 = 𝑡𝑙. Combining this with the
size of the precomputed table 𝑀 = 𝑚𝑙, it can be deduced that the trade-off curve for the DP trade-off follows

Time-memory trade-off

⚫ Rainbow Trade-Off

The rainbow trade-off which was proposed by Philippe Oechslin in 2003 builds upon the foundation of the Hellman trade-off
but introduces improvements. It applies different 𝐺𝑖 (1 ≤ 𝑖 ≤ 𝑡) functions to each column of the precomputed rainbow matrix.

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑜𝑓 𝑅𝑒𝑑𝑢𝑐𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
𝑤𝑖𝑡ℎ 𝐻𝑒𝑙𝑙𝑚𝑎𝑛 𝑇𝑟𝑎𝑑𝑒 − 𝑜𝑓𝑓

𝑆𝑐ℎ𝑒𝑚𝑎𝑡𝑖𝑐 𝑜𝑓 𝑅𝑎𝑖𝑛𝑏𝑜𝑤 𝑇𝑟𝑎𝑑𝑒 − 𝑜𝑓𝑓

Time-memory trade-off

⚫ Rainbow Trade-Off

In terms of a singular table, the success rate of a rainbow trade-off is:

𝑃𝑠𝑖𝑛𝑔𝑙𝑒 = 1 −ෑ

𝑖=0

𝑡−1

(1 −
𝑚𝑖

𝑁
)

When t is the length of a chain, 𝑚0 = 𝑚 and 𝑚𝑖+1 = 𝑁(1 − exp(−𝑚𝑖/𝑁))(0 ≤ 𝑖 ≤ 𝑡 − 1)， assuming the existence of 𝑙 tables, the
success rate of a rainbow trade-off is:

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 1 −ෑ

𝑖=0

𝑡−1

1 −
𝑚𝑖

𝑁

𝑙

Oechslin suggested setting 𝑚 = 𝑁2/3, 𝑙 = 1, and 𝑡 = 𝑁1/3. Therefore, in the pre-computation phase of the rainbow trade-off, the
required space is 𝑀 = 𝑚𝑙, the number of iterations needed during the attack phase is 𝑇 = (𝑡2)/2, so the trade-off curve for the
rainbow trade-off is:

𝑇𝑀2 = 𝑁2/2

Time-memory trade-off

⚫ Other Rainbow Trade-Off

• Thin-rainbow trade-off

The concept of a "thin-rainbow trade-off " involves reducing the number of distinct 𝐺𝑖 functions to 𝑠 and cycling
through these 𝑠 𝐺𝑖 functions in a periodic manner.

𝑆𝑃𝑖 𝐸𝑃𝑖𝑥0,0
𝐺0 𝑥0,1 𝑥0,2

𝐺1 𝑥0,𝑠
𝐺𝑠−1 𝑥𝑡−1,0

𝐺0 𝑥𝑡−1,1 𝑥𝑡−1,2
𝐺1 𝑥𝑡−1,𝑠

𝐺𝑠−1

• Thick-rainbow trade-off

In this method, the thick-rainbow trade-off applies a different Gi function after each t repetition of a single Gi function.

𝑆𝑃𝑖 𝐸𝑃𝑖𝑥0,0
𝐺0 𝑥1,0 𝑥2,0

𝐺0 𝑥𝑡,0
𝐺0 𝑥0,𝑠−1

𝐺𝑠−1) 𝑥1,𝑠−1 𝑥2,𝑠−1
𝐺𝑠−1 𝑥𝑡,𝑠−1

𝐺𝑠−1

t times t times

• Fuzzy-rainbow trade-off

This method enhances rainbow-based attacks by combining the DP trade-off with the thick-rainbow scheme.

𝑆𝑃𝑖 𝐸𝑃𝑖
𝐺0 𝐺0 𝐺0 𝐷𝑃 𝐺𝑠−1) 𝐺𝑠−1 𝐺𝑠−1 𝐷𝑃

Time-memory trade-off

⚫ Perfect Table Trade-Off

Perfect Table

Trade-Off

Hellman Trade-off

DP Trade-off

Rainbow Trade-off

Hellman precomputation table requires
extensive checks, making its cost
prohibitively high and impractical.

If a merge is detected within the current
computation chain, the approach involves
retaining the longer chain from multiple
merged chains until 𝑚 precomputed chains
are generated.

(No chain merge)
(Nearly no nodes same) This trade-off enables the creation of a

perfect rainbow table without merges.
However, in rainbow tables, the same
node between different columns could
be retained.

Note: Don't neglect the additional cost associated with generating perfect
tables.

Storage Optimization

04
PART

Storage Optimization

⚫ Consecutive Starting Points

A practical method of choosing starting points is to use

consecutive integers [1]. The integers 0 through m − 1 will

work for any (non-perfect) table.

𝑆𝑃𝑖

log2𝑁

𝑆𝑃′𝑖

log2𝑚

⚫ DP Definition

if the first 𝑑 bits are defined as 0 for DP points, then eliminating

these 𝑑 bits when storing start point values would have no

impact on the overall computational efficiency.

𝑆𝑃𝑖

log2𝑁

𝑆𝑃′𝑖

log2𝑁 − 𝑑

Storage Optimization

⚫ Index Table

It dissects the endpoint into an index part and a data part. The data part is stored in the pre-computation table alongside

the starting point, while the index part is retained within the index table.

𝐼𝑛𝑑𝑒𝑥𝑖 𝐷𝑎𝑡𝑎𝑖𝐸𝑃𝑖

𝐼𝑛𝑑𝑒𝑥𝑖

𝐼𝑛𝑑𝑒𝑥
𝑇𝑎𝑏𝑙𝑒 𝑃𝑟𝑒 − 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝑇𝑎𝑏𝑙𝑒𝐷𝑎𝑡𝑎𝑖 𝑆𝑃𝑖

𝑆𝑃𝑖

Storage Optimization

⚫ Ending Point Truncation

In the pre-computation phase, when truncating the endpoints in the table entries, it is essential to retain enough bits
(slightly exceeding "log2𝑚") to uniquely identify each pre-computed chain. During the online phase, when conducting
table lookups, the subject of the search will be truncated to the same length before being compared with the entries in
the precomputation table.

𝑃𝑟𝑒 − 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑃ℎ𝑎𝑠𝑒

𝐸𝑃𝑖
′(log2𝑚 + 𝜀) 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑡

𝐸𝑃′𝑖

𝑃𝑟𝑒 − 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛
𝑇𝑎𝑏𝑙𝑒

𝐴𝑡𝑡𝑎𝑐𝑘 𝑃ℎ𝑎𝑠𝑒

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑉𝑎𝑙𝑢𝑒

𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑉𝑎𝑙𝑢𝑒′ 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑖𝑜𝑛 𝑃𝑎𝑟𝑡

𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑢𝑟𝑒

log2𝑚 + 𝜀

Implementation Platform

05
PART

The most distinctive feature of Field-Programmable Gate
Arrays (FPGAs) lies in their configurational flexibility.
Through programming, their application scenarios can be
altered at will, greatly reducing the development time and
costs of cryptographic attack accelerators.

FPGA

CPU-GPU Heterogeneous Platform

GPU

CPU-FPGA heterogeneous devices are also noteworthy
heterogeneous platforms in the industry. The FPGA is
responsible for accelerating data processing, while the
CPU handles other minor computational tasks such as
data interaction.

CPU-FPGA Heterogeneous Platform

Implementation Platform

GPU significantly enhances the efficiency of rainbow chain
generation. Within the pre-computation phase of the
rainbow trade-off, the calculation of rainbow chains is
distributed to each GPU thread. This significantly enhances
the efficiency of rainbow chain generation. However, the
high performance of GPUs comes at the cost of high
energy consumption. Within the GPU, there exists a multitude of processing

cores capable of simultaneously executing thousands of
computational tasks. The CPU-GPU architecture is
particularly well-suited for processing scenarios
demanding high performance, making it an apt platform
for password recovery.

Summary

06
PART

Summary

⚫ Optimization Direction

⚫ Optimization Principle

• Trade-Off Algorithm Selection

• Storage Optimization Selection

• Implementation Optimization Selection

• Multi Strategy Cooperation

• Success Rate Requirement

• Budget Constraints

THANKS

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26

