

On-Demand Clock Boosting for Secure Remote Work System

Justus von der Beek

Studying M.Sc in Informatics, Technical University of Munich

beek@in.tum.de

Atsushi Shinoda⁺, Hajime Shimada⁺, Hirokazu Hasegawa^{*}

+ Nagoya University, Japan

* National Institute of Informatics, Japan

Short Bio

- Justus von der Beek is a master student at the Technical University of Munich
- He is currently pursing his master degree in informatics with interest in computer networking and network security
- During his exchange with the Nagoya University in Japan he researched on energy efficiency of computing systems

Outline

- Motivation
- Work System Overview
- Boosting CPU Frequency On-Demand
- Implementation Designs
- Clock Boosting Algorithm
- Evaluation

Motivation

- Electricity usage estimation of Liu et al.
 [1] for data centers of 2015 and beyond
 - Expected to be one of the major energy consumers
- Rise in remote learning [2] and VPN traffic since 2019 [3]

Normalized VPN traffic volume at IXP-CE in 2020, Feldmann et al. [3]

^[1] Y. Liu et al., "Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers," Global Energy Interconnection, vol. 3, no. 3, pp. 272–282.

^[2] T. Favale et al., "Campus traffic and e-learning during COVID-19 pandemic," Computer Networks, vol. 176, article 107290.

^[3] A. Feldmann et al., "The lockdown effect: Implications of the COVID-19 pandemic on internet traffic," ACM, pp. 1–18., 2020

Work System Overview

- Shinoda et al. [4] developed a Software Defined Networking (SDN) remote work system with additional Access Control List (ACL) feature
 - Gain additional system security through blocked access to (high-) risk data
 - Simulating company network via Software Defined Networking (SDN)
 - Deploying ACL in SDN Controller
 - Calculation on SDN Controller compute intensive

Employees

Work system overview developed by Shinoda et al. [4]

^[4] A. Shinoda et al., "Implementation of access control method for telecommuting communication based on users' reliability," CSS, pp. 840–847.,2022

Idea: Boosting CPU Frequency On-Demand

- We don't need computation power if no client is connected
 - All power as soon as computation is started
- CPU power and voltage are quadratically connected
 - $P = a * C * F * V^2$ (C: Circuit capacitance, a: activity factor, F: frequency, V: supply voltage)
- SDN-Controller only works when client is connected
 - Increase frequency
 - From start of connection until the disconnect
- Challenge 1: do not increase the idle power consumption
 - Long idle times (hours) are possible
 - Adverse effect if idle power consumption is increased too much
- Challenge 2: predicting future connections & connection patterns
 - Out of scope for this paper
 - Reacting to feedback from system as fast as possible

Implementation Designs: BCC & XDP

Idea 1: BPF compiler collection (BCC) & cpupower

- Pros: less hardware requirments, easier to deploy
- Cons: Slower reaction time, higher overhead

Idea 2: eXpress Data Path (XDP) & sysfs (Linux)

- Pros: lower in network stack, hence faster reaction
- Cons: requires XDP driver support

Clock Boosting Algorithm

1: if packet is TCP then

- 2: if packet.flags is SYN then
- 3: map[TCP_count] ← map[TCP_count] + 1
- 4: else if packet.flags is FIN then
- 5: map[TCP_count] ← map[TCP_count] 1
- 6: **end if**

7: end if

The XDP program listening for TCP connects and disconnects

1: prv_count $\leftarrow 0$

2: while true do

3: count \leftarrow map[TCP count] **if** count ≥ 1 *and* prv count = 0 **then** 4: boost frequency() 5: 6: prv count \leftarrow count 7: end if 8: **if** count = 0 *and* prv count \ge 1 **then** 9: reset_frequency() 10: prv_count ← count 11: end if

12: end while

The userspace program updating the frequency based on the number of TCP clients

Evaluation: Setup

- System under test (SDN-Controller):
 - Ryzen 3700U with 4 cores, SMT, 15W maximum power draw
 - 3 frequencies available: 1.4GHz, 1.7GHz, 2.4GHz
 - Performance, Powersave, Ondemand governors (Linux) available
 - RockyLinux with kernel version 6.3
 - Measuring power via Running Average Power Limit (RAPL) interface
 - turbostat tool
- Company employees:
 - 9x Windows 10 machines
 - Per gigabit ethernet connected
 - Repeatedly connecting and disconnecting via VPN as fast as possible

Evaluation: Stress Power Consumption

For 35 connections (~2:30min):

- 23% less power consumed compared to unmodified system
- XDP implementation requires 5% • less power than BCC
- Disabling Turbo Core yields 2% less energy consumption than XDP
- Powersave mode requires least • energy

Frequency Configuration and Governor

Evaluation: Idle Power Consumption

- Testing idle consumption for 2 minutes
 - Due to event based trigger low impact on idle consumption
 - Both designs only trigger when packet arrives
 - Otherwise, no code is executed

Mode	Default	XDP	BCC
Energy Consumption	256.62	262.02	266.62
Relative Consumption	100%	102%	104%

Evaluation: Quality of Service

- Time in seconds to connect/disconnect
- Black line: median operation time
- Cross: mean operation time
- Default powersaving mechanisms
 - 1-3% increase in mean connection time
- BCC
 - 2.4% mean connection time increase
- XDP architecture is fastest
 - 3% faster than the default configuration
 - 5% faster than the No Boost, ondemand configuration
 - Slow outliers degrade mean connection time

Selected References

- Y. Liu et al., "Energy consumption and emission mitigation prediction based on data center traffic and PUE for global data centers," Global Energy Interconnection, vol. 3, no. 3, pp. 272– 282.
- 2. T. Favale et al., "Campus traffic and e-learning during COVID-19 pandemic," Computer Networks, vol. 176, article 107290.
- 3. A. Feldmann et al., "The lockdown effect: Implications of the COVID-19 pandemic on internet traffic," ACM, pp. 1–18., 2020
- 4. A. Shinoda, H. Hasegawa, Y. Yamaguchi, H. Shimada, and H. Takakura, "Implementation of access control method for telecommuting communication based on users' reliability," in Proceedings of Computer Security Symposium, pp. 840–847.,2022