Simulation of Pipeline Transport of Carbon Dioxide with Impurities

Mehrnaz Anvari, Anton Baldin, Tanja Clees, Bernhard Klaassen, Igor Nikitin, Lialia Nikitina, Sabine Pott

Fraunhofer Institute for Algorithms and Scientific Computing
Sankt Augustin, Germany

Contact email: lialia.nikitina@scai.fraunhofer.de
Content

- the purpose
- pipe transport modeling
- equation of state
- phase transitions
- numerical experiments
Carbon dioxide Capture and Storage (CCS) systems

- the purpose: to reduce greenhouse gas emissions into the atmosphere

- CCS systems consist of 3 parts:
 (1) capturing carbon dioxide (CO2) at its source
 (2) transporting CO2 through pipelines to special storage sites
 (3) injecting CO2 into wells, when underground storage is used

- transport in the liquid or supercritical phase is to be preferred, to support high flow rates
- transport must stay in that phase, without transitioning to gaseous state, to avoid cavitation
- precise transport simulation with indication of phase transition is required
Pipe transport variables

- mass density ρ, velocity v, pipe cross section area S
- mass flow: $m = \rho \cdot v \cdot S$
- density of momentum: $\rho \cdot v$, momentum flow: $\rho \cdot v^2 \cdot S$
- density of energy: $\rho \cdot e$, energy flow: $\rho \cdot e \cdot v \cdot S$
- where e is specific energy (per unit mass)
- $e = u + \frac{v^2}{2} + gh$ with kinetic and gravity terms
- u is specific internal energy
Pipe transport equations

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} &= 0, \\
\frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho v^2)}{\partial x} + \frac{P}{\partial x} &= -\lambda \rho v|v|/(2D) - \rho g \frac{\partial h}{\partial x}, \\
\frac{\partial (\rho e)}{\partial t} + \frac{\partial (\rho ev)}{\partial x} + \frac{Pv}{\partial x} &= -4c_h(T - T_s)/D
\end{align*}
\]

change of (mass, momentum, energy) in dx-element
flow of (mass, momentum, energy) through boundaries
pressure contribution at the boundaries (PS=force, PSvdt=work)
can be unified to specific enthalpy
\[H_s = u + P/\rho\]
Pipe transport equations

\[
\begin{align*}
\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} &= 0, \\
\frac{\partial (\rho v)}{\partial t} + \frac{\partial (\rho v^2 + P)}{\partial x} &= -\frac{\lambda \rho v|v|}{(2D)} - \rho g \frac{\partial h}{\partial x}, \\
\frac{\partial (\rho e)}{\partial t} + \frac{\partial (\rho e v + P v)}{\partial x} &= -\frac{4c_h(T - T_s)}{D}
\end{align*}
\]

stationary process considered: \(\partial/\partial t = 0 \)
proper discretization applied

dependence of lam on other parameters via Nikuradse/Hofer formula
Darcy-Weisbach friction term
gravity force contribution (g-free fall accel., h-height)
heat transfer to soil or other environment (T-temperature, D-pipe diameter)
Equation of state (EOS) and enthalpy definition

- EOS: \(z = z(T,P,x) \), with \(P = \rho \frac{RTz}{\mu} \) as definition of compressibility factor \(z \);
 - \(R \) - universal gas constant, \(\mu \) - molar mass, \(x \) - vector describing fluid composition
- enthalpy, similarly: \(H = H(T,P,x) \)
- there are a lot of empirical approximations to the real fluid EOS and \(H \)
- we use the most complex ones provided by \textbf{GERG2008} thermodynamical module (ISO standard)
- Homogeneous Equilibrium Model (HEM): different phases of a fluid are homogeneously mixed and have the same speed, pressure, temperature and chemical potential
- implemented in our software \textbf{MYNTS} (Multi-phYsics NeTwork Simulator)
Phase transitions

- GERG2008 properly computes phase transitions
- for pure substances - phase transition line (transition at const T,P)
- for fluids with impurities - phase envelope (transition at const T, variable P)
Phase transitions

- $\text{frac}(T,P,x)$ – fraction of gaseous phase
- $\text{frac}=0$ liquid, $\text{frac}=1$ gas, $0<\text{frac}<1$ two-phase
- spurious jump in supercritical region (where gas and liquid states are indistinguishable)
- simple algorithm testing for phase transition in vicinity of a given (T,P,x)

Algorithm (proximity-alarm):

given $(T_0, P_0, x, dT, dP, \text{val})$
for T in (T_0-dT, T_0, T_0+dT)
 for P in (P_0-dP, P_0, P_0+dP)
 if $\text{frac}(T,P,x) != \text{val}$ return true
return false.
Numerical experiments

- 95% CO2, 3% N2, 2% O2
- single pipe, laid horizontally
- two scenarios: scen1 without phase transition, scen2 – with phase transition
- result: scen1 converges, scen2 diverges (cycling)
- the same pattern for other scenarios, phase transition leads to divergence
- the reason – too sharp change in EOS and H at phase transition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol [units]</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>total pipe length</td>
<td>L_{tot} [km]</td>
<td>150</td>
</tr>
<tr>
<td>pipe internal diameter</td>
<td>D [m]</td>
<td>0.5</td>
</tr>
<tr>
<td>pipe roughness</td>
<td>k [mm]</td>
<td>0.5</td>
</tr>
<tr>
<td>heat transfer coefficient</td>
<td>e_h [W/(m²K)]</td>
<td>4</td>
</tr>
<tr>
<td>fluid composition</td>
<td>$x(CO_2, N_2, O_2)$</td>
<td>(0.95, 0.03, 0.02)</td>
</tr>
<tr>
<td>inlet pressure</td>
<td>p_{set} [bar]</td>
<td>100</td>
</tr>
<tr>
<td>outlet norm.vol.flow, scen1</td>
<td>q_{set1} [10³m³/h]</td>
<td>200</td>
</tr>
<tr>
<td>outlet norm.vol.flow, scen2</td>
<td>q_{set2} [10³m³/h]</td>
<td>310</td>
</tr>
</tbody>
</table>
Numerical experiments

details

prec

convergence

iter

T, K

convergence

86 88 90 92 94 96 98 100

scen1 P, bar

 scen2 P, bar

0 20 40 60 80 100

cycling

convergent region

80 60 40 20 0

phase envelope

cycling

scen2

Spurious transition

Proximity alarm

P, bar

divergence

© Fraunhofer SCAI
Conclusion

- numerical simulation of stationary CO2 transport with impurities and phase transitions is considered
- homogeneous equilibrium model and GERG-2008 thermodynamic module are used
- the algorithms solve scenarios of CO2 transport in the liquid or supercritical phase and detect the approaching phase transition region
- convergence of the algorithms is analyzed in connection with abrupt changes of EOS and enthalpy function in the region of phase transitions
Conclusion

- numerical experiments show that the scenarios with CO2 transport in a single phase converge
- a conservative algorithm for detecting proximity of phase transitions gives the solution to the technical problem posed
- divergences can occur in scenarios with phase transitions due to the abrupt change of thermodynamic parameters
- questions about possible suppression of divergences and improved detection of phase transitions are the subject of our further work
Thank you for your attention