Presentation of the ICSEA 2023 conference paper:

Design Pattern Detection in Code:
A Hybrid Approach Utilizing a Bayesian
Network, Machine Learning with Graph
Embeddings, and Micropattern Rules

Roy Oberhauser and Sandro Moser
Aalen University
Germany

The Eighteenth International Conference on Software Engineering Advances
ICSEA 2023

Presenter: Roy Oberhauser

« Professor of Computer Science at Aalen University in Germany since 2004, teaching in the areas
of software engineering.

« Worked 14 years in the software industry (Silicon Valley and Germany).

« Research interest is to leverage technologies, methods, techniques, and tools to innovate,
automate, support, and improve the production and quality of software for society.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 2
Embeddinas. and Micropattern Rules"

Contents

« Motivation

o Challenges

« Background

e Solution

o Implementation
« Evaluation

e Conclusion

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 3

Motivation >

Motivation

While the amount of program source code worldwide continues to rapidly expand, code
comprehension remains a limiting productivity factor.

« Program comprehension may consume up to 70% of the software engineering effort [1].

« Activities involving program comprehension include investigating functionality, internal structures,
dependencies, run-time interactions, execution patterns, and program utilization; adding or
modifying functionality; assessing the design quality; and domain understanding of the system [2].

« Code that is not correctly understood by programmers impacts quality and efficiency

Software Design Patterns (DPs) have been documented and popularized, including the Gang of
Four (GoF) [3] and POSA [4].

« The application of abstracted and documented solutions to recurring software design problems
has been a boon to improving software design quality, efficiency, and aiding comprehension.

« These well-known macrostructures or associated pattern terminology in code can serve as
beacons to abstracted macrostructures, and as such may help identify aspects such as the
author’s intention or the purpose of a code segment, which, in turn, supports program
comprehension

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 4

Challenges >

Challenges for Automated Design Pattern Detection (DPD)

« Possible benefits of automated DPD development or maintenance include:

Quicker comprehension of DP-related structural aspects of some software;
Supplementing design documentation; automatically documenting DPs;

Reducing dependence on unreliable or incomplete manual DP documentation;
Detection of inadequately implemented DPs, e.g., as unknown DPs or DP variants.

« Yet automated DPD faces challenges, including:

I'I'ooI support for heterogeneous programming languages, as DPs are independent of programming
anguage;

Internationalization and labeling, since developers may name and comment in their natural language or
any way they like;

Varying pattern abstraction levels, such as design vs. architectural patterns;

Similarities and intent differentiation, since some similar pattern structures are primarily differentiated by
their intention;

DP localization, indicating where in code a DP was detected; and

Detecting variants, since each implementation is unique. While various DPD approaches have been

explored_{_S] [6[],_ no approach has so far achieved significant traction in practice and industry tools, and
thus additional investigation into further viable approaches and improvements is warranted

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 5
Embeddinas. and Micropattern Rules"

Background >
Automated DPD Approaches

« Automated DPD approaches can arguably be categorized into three primary approaches:

= Learning-based
« DPs are (semi-)automatically learned (e.g., via supervised learning) from provided data and requiring minimal
expert intervention;

= Knowledge-based

« an expert defines DPs by describing elements and their associations; and
= Similarity-based

« DPs are grouped based on similar metrics or characteristics

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph
Embeddinas. and Micropattern Rules"

Solution >

Components of our HyDPD-B Solution Concept

In previous work our hybrid DPD approach (HyDPD)
was described. HyDPD:
« Combines various DPD approaches.

« Converts heterogeneous source code into a HyDPD-GA N HyDPD-MP
common format srcML [36] for further processing Graph-based Micropattern
by a hybrid set of subsystems: structural analysis Rules

« HyDPD-GA: Graph Analysis (GA) converts the srcML to BSON (Binary JSON) stored in
MongoDB, maps it to a graph model stored in Neo4j that supports the Cypher Query Language
(CQL) [37] for graph-based DPD analysis

« HyDPD-ML: Machine Learning (ML) model; for this paper uses knowledge graph embeddings as
input to a supervised learning model

« HyDPD-MP: new MicroPatterns (MP) subsystem for expert-based approximate DP matching via
MicroPattern (MP) rule catalog and Design Pattern Rule Language (DPRL) support

« HyDPD-B: new hybrid solution concept using a Bayesian network to integrate results from our
various DPD subsystems (HyDPD-ML, HyDPD-GA, HyDPD-MP).

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 7
Embeddinas. and Micropattern Rules"

Solution >

Improvements

HyDPD-B improvements to our previous HyDPD concept include:

« DPRL: Providing a mechanism to engage developers as experts in defining DP rules via a simple
DP Rule Language (DPRL)

« HyDPD-MP: Enabling approximate DP matching via micropatterns support (HyDPD-MP)
« HyDPD-ML: Utilizing graph embeddings to leverage structural code graph ML results
« Variants: Enabling known and unknown variant detection

« Bayesian network: provides a flexible framework for probabilistic reasoning that is
comprehensible and interpretable for humans, and thus offering a hybrid solution for utilizing all
three DPD approaches (learning-, knowledge-, and similarity-based)

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 8
Embeddinas. and Micropattern Rules"

Solution > HyDPD-MP (MicroPatterns)

HyDPD Design Pattern Rule Language (DPRL)

« Agraph-oriented rule language for developers (i.e., the knowledge experts) that should be
relatively easy to learn and comprehend.
= While the Neo4j Cypher Query Language (CQL) is powerful and offers a human-readable interface for
formulating graph queries, a developer would nonetheless need to learn the Cypher syntax to formulate
these only for the purpose of DPD.
= Instead, since developers are already well acquainted with the relatively simple JSON format, we chose
have DPRL conform to JSON, and then parse and map values to generate CQL.

« The primary language concepts are participants, subpatterns, and relations

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 9

Solution > HyDPD-MP (MicroPatterns)

Design Pattern Rule Language (DPRL): Adapter DP Example

Participants represents a collection of participant objects in a
DP.

In its simplest form, a participant consists of the field name
(line 21) — for instance, if the nature of the participant is

irrelevant but the role it plays is of importance.

The optional constraints field (line 4 and 14) allows a
collection of arbitrary unary constraints (constraints that only
involve the participant variable) to be specified.

In Cypher, these constraints may correspond to labels while
others may correspond to attributes. The distinction is made
by our DSL parser using an internal symbol table.

A constraint consists of three values: field (line 6 and 16)
corresponding to the target of the constraint; operator (line 7
and 16) corresponding to the truth operator; and value (line 8
and 18) corresponding to the desired field value.

{

"participants": [

h

{

"constrail

"field": "Type",
"operator": "is",
"value": true

"name":

"constrai

{

“field": "Type",
“operator": "is",
"value": true

name":

"adaptee"

"adapter"

nts": [

nts": [

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 10

Embeddinas. and Micropattern Rules"

Solution > HyDPD-MP (MicroPatterns)

Design Pattern Rule Language (DPRL): Adapter DP Example

« Subpatterns (line 24) represents a collection of [
subpattern objects, each of which consists of a z
collection of binary relations (line 26 and 43) and |27
the field truthvalue (line 40 and 57), indicating if i
the subpattern should be matched positively or 30
negatively (precluded).

« While a pattern can contain only a single positive |**
subpattern, it can contain an arbitrary number of |35
negative subpatterns.

“"subpatterns": [
{
"relations": [
{
"constraints": [
{
"field": "collection",
"operator": "is",
“value": "true"
}
1
"directed": true,
"operandl": "adaptee",
"operand2": "adapter"
}

1,
"truthvalue": false

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules"

1"

Solution > HyDPD-MP (MicroPatterns)

HyDPD Design Pattern Rule Language (DPRL): Adapter DP Example

« Relations (line 26 and 43) is a collection of relations [R
between participants, which are specified by the o retauons”
fields operand1, operand2, constraints, and directed " reonstraints's |
(lines 28-37). P “fielg" ection*,
. . 48 "operator" ",
« Operand1 and operand2 each contain either a a9 “value": "false"
name reference to a participant or a full description . . '
of a participant object (as described above). 52 “directed": true,
53 “operandl": "adaptee",
« The collection constraints contains constraints o joperanan: tadaptert
analogous to those defined on a participant. 56 1
57 "truthvalue": true
58 }
59 1
60 }

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 12

HyDPD Design Pattern Rule Language (DPRL):
Adapter DP Example
e Our JSON DSL is automatically parsed to an equivalent Cypher query.

« For the Adapter DP example DPRL example on the right, the
equivalent Cypher Query is shown below.

MATCH (adaptee) -[el-> (adapter)

WHERE adaptee:Type AND adapter:Type AND e.collection = false

AND NOT EXISTS {MATCH (adaptee) -[f]-> (adapter) WHERE adaptee:Type
AND adapter:Type AND f.collection = true AND adaptee <> adapter}
AND adaptee <> adapter RETURN x

In our opinion, for a developer with no knowledge of Cypher,
the equivalent Cypher query is more complicated
to formulate or comprehend than the JSON on the right.

oy
©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 13
Embeddinas. and Micropattern Rules"

Solution > HyDPD-MP (MicroPatterns)

MicroPattern Catalog (MPC)

Certain structural aspects of design patterns can ideally be expressed as a set of smaller
elementary units or characteristics we refer to as MicroPatterns (MPs) [39]

= E.g., Instantiation, Inheritance, Delegate, Extend, and Conglomeration.
This also supports the reuse of viable MP detection components.

Decomposing our existing graph-based queries in the Cypher Query Language (CQL) from our
previous work on HyDPD-GA provided derived MPs with appropriate queries.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 14

Solution > HyDPD-ML (Machine Learning)

Randomized Graph Embeddings

e In our previous work, HyDPD-ML was trained on tabular features extracted from source code.
These features include the existence of specific semantic keywords, as well as object-oriented
metrics, such as the number of classes in a project.

This approach is vulnerable to a change in naming convention or code obfuscation.

« To mitigate this issue, we introduce a new approach, using knowledge-graph-embeddings.

Input for those embeddings is provided by the graphs used by HyDPD-GA.

« We apply a simple embedding approach:

We first sample a predetermined number of random substructures in the graph.

Those substructures are always extracted from the training set to exclude possible information leakage.
Substructures include information about the relationship type. From those substructures, we derive a pattern
query.

A graph embedding is created by matching all generated pattern queries against a graph. This results in
binary vectors, 0 if a pattern matched, else 1.

gvah”eerrtlhe number of generated patterns can be treated as a hyper parameter, we decided to work with 500
Another hyper parameter is the complexity of extracted patterns, We define pattern complexity as the number
of edge traversals in the knowledge graph (shown with complexity 3 in the figures).

In a grid search experiment, it was determined that constraining complexity between 3 and 4 traversals yields
optimal results.

The graph embeddings are consumed by a simple logistic regression model with L2 regularization.

This enables learning from sparse data.

This composition of random feature extraction combined with a regularized linear model is inspired by the

ET—aI%onthm which is used for time series classification [40]. By using a linear model, the
|nterpretab|l y of any results can be better supported.

Embeddinas. and Micropattern Rules"

o

e

m»;ms

/\
\/

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

\
overrides

15

Solution > HyDPD-B (Bayesian Network)
Pattern Variant Detection

« DPs often do not conform exactly to some specification,
making detection of DP variants challenging. The problem of

Available

DP variant detection can be partitioned into Data ioiee
= 1) the detection of known variants, and oP-Standard
= 2) the detection of unknown variants [oP. vlanaﬁ e P i)
« Assuming DP variants share a substantial degree of MPs, our z
solution concept should be able to detect known pattern S G
variations efficiently. Real World -

« Moreover, by using hidden variables in the Bayesian network,

i H H H H H Detecting known (left) and
:Ee algcl:mt?m can also provide precise information regarding unknown {ight) DF variants
e variant.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 16

Solution > HyDPD-B (Bayesian Network)

Pattern Variant Detection Example

Yellow variables correspond to DP variants.

= To learn probabilities of those variant variables from L | L | L |
data, it is necessary to annotate the data accordingly. |

If uninterested in variants, the intermediate variables J ¢ N J — Y
could be omitted and all MPs involved wired directly to | ' J [' ' l
the DP variables. o
(standard)

Pattem A Pattem B Pattern C Pattem D

Adapter
Variation 1

Adapter Observer Observer
Variation 2 (standard) Variation 1

Probabilities are computed using Bayes theorem, ‘
where a hidden variable per variant can be

calculated using knowledge of all observed

variables [41].

e)

Adapter ?‘ Observer

Unfortunately, it is questionable if new variant detection can be done efficiently via a knowledge-
based system.

= This is due to the fact that system is biased by the expert towards DP implementations known to him.

= However, as the proposed system is more flexible than a classical rule-based approach due to the usage

of MPs and probabilistic reasoning, it should be able to better detect new variants that share MPs with
known variants.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 17
Embeddinas. and Micropattern Rules"

Solution > HyDPD-B (Bayesian Network)

Metamodel Bayesian Network

The output of both the ML and MP DPD subsystems
is integrated into the Bayesian network HyDPD-B as
shown in the example in the figure.

To enable this, the result of the ML subsystem has to
be interpreted as an observed variable in a network.

Unfortunately, the system only allows binary variables,
while the output cardinality of the ML system is
dependent on the number of considered DPs.

To avoid this, one can formulate variables in the
following way:
= abinary ML variable is associated with a model, as well
as a specific DP.

= If the prediction of the model equals the specified DP,
the variable evaluates to true.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Patiem A

Patiem B

ML predicts

Adapter

Patiern C

ML predicts.
Observer

{

Embeddinas. and Micropattern Rules"

Adapter

I

Observer

U L

Realization >

Realization Aspects

e Software used to realize the solution included:

sklearn, numpy, pandas, matplotlib, seaborn, NetworkX,
Pomegranate for the Bayesian network, Flask, Jupyter notebooks,
Docker, Docker Compose, Neo4j, MongDB, ReactJS, and JointJS.
The core of the backend was realized in Python as a library, which
contains all modules necessary to create the Bayesian networks and
ML models for DPD.

Web-based User Interface (Ul)
e Single Page Application (SPA).

Jupyter Notebooks can suffice as a frontend for research purposes,
but could be inconvenient for SW developers, who would have to
code in Python and know the API of the library.

Instead, our Ul provides the ability to create Bayesian networks
graphically and train them via graphical Ul elements (top figure).

Step 1: create or load network and visualize the decision-making
process

Step 2: training the model

Step 3: the data can be loaded and a prediction run.

e Ul for DPRL rule editor shows JSON and CQL (bottom figure)

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules"

1.Step

Create amodel
OR

Load amodel

o D

2.Step

Train model

3.Step
Use model for inference|

19

Realization >

Micro Pattern (MP) Catalog (MPC) Realization

1)

2)

3)

4)

Override Abstract: Derived from the Adapter Cypher #aTcH (adapter:Type) - [INHERITS*1] > (target : Abstract: Type) ,
iti | MP d ibi thod that (adapter)-[:HAS]->(adapter_op:Operation),

query, itis a general escribing a method thatl ., et) - (:as1-> (target_op:0peration),

overrides an abstract method. (adapter_op)-[:0VERRIDES] ->(target_op) RETURN x

Iterate: This MP simply queries if a participant

iterates over another participant, and commonly

occurs in the Observer DP.

MATCH (a)-[:ITERATES]-(b) RETURN *

Abstract Function Call: This MP describes a call of

an abstract funCtIOI'l Such Ca”S Occur |n the MATCH (c_notify)-[:CALLS]->(update:Operation:Abstract) RETURN *
Observer DP, more precisely when a notify function

calls an update function.

Has Collection: This MP queries if there is a WaTCH

participant that owns a coIIection Of abstract types (c_subject:Type)-[:HAS {collection: true}]->(observer:Type:Abstract)
* RETURN *

This MP is frequent in the Observer DP.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 20

Realization >

Micro Pattern (MP) Catalog (MPC) Realization

5) Override & Delegate: This MP describes a function MATCH (adapter_op)-[:0VERRIDES] ->(target_op),

overriding a function and calling another function, (adaptee)-[:HAS]->(adaptee_op:Operation),
(adapter_op)-[:CALLS]->(adaptee_op)
and was extracted from the Adapter DP. WHERE adaptee op <> taraet op RETURN %
6) Double Inheritance: This MP describes double
inheritance, used in Adapter DP instances. If the MATCH () <-[: INHERITS] ~(a) - [NHERITS] > (b) RETURN %

Adapter pattern is implemented in the static, class-
based way, the Adapter participant should in some
way inherit from the adaptee as well as from the
target.

7) Overriding Method Creates: This MP describes a
method that overrides another method and creates
an object. It was extracted from the Factory Method
DP.

MATCH (creator_method) <-[:OVERRIDES]~(method) - [: CREATES]->(object) RETURN *

MATCH

8) Returns Abstract: This MP matches methods that (concrete create o~ tsrerumisi-s tabstractproduct) < (s iRTs) - (concretepraduct)
return an abstract class, and was extracted from TR -
the Factory Method DP.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 21

Realization >

MP Bayesian Network Realization

« Each DP is connected to relevant MPs. Abstract

Override

« In HyDPD-GA, DPs were distinguished
in a query by excluding certain features
that would implicate another DP, as
certain patterns exhibit a high degree
of overlap in structure and behavior.

« Unfortunately, such exclusions make
DPD more complex.

« Toresolve this, output variables of
frequently confused DPs are
interconnected with each other.

« An example of the resulting network
can be seen in the figure.

function call Abstract

Double Returns
Inheritance Abstract

Has
collection

Override &
Delegate

_YYvY Yy vy v LA

Overriding
method
creates

Factory

Observer |—» Adapter [—» 0O

-

Bayesian network architecture for 3 DPs utilizing 8 MPs

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph
Embeddinas. and Micropattern Rules"

Realization >
Metamodel Bayesian Network Realization

o Leaf variables:

= Corresponds to the result of a MP match against the graph. Thus, the value of a leaf variable can be
calculated deterministically at inference time. The variable requires a binary output (False or True). While it is
feasible to use continuous variables, it would make the system less comprehensible and interpretable.

e Hidden variables:

= Cannot be directly detected like measurable variables. The output of a hidden variable depends solely on the
input of parent variables. To allow a model to learn values of hidden variables from data, the data must
annotated accordingly. A hidden variable can be expressed as a conditional table, which maps each
combination of parent variables to a probability value (e.g., T/T->0.8, T/F->0.5, F/F->0.2). In practice, such
annotations might indicate the specific pattern variants or participants involved in the pattern.

= For DPD, hidden variables may correspond to following entities: DP probability that code is instance of a
specific DP; DP variant probability that code is instance of a specific pattern variant; DP participant probability
that code contains a DP participant; and MP pattern probability that code contains a specific MP.

e Query variables

= We are not necessarily interested in all available hidden variables.

= For DPD, we are specifically interested in the probabilities given to DPs. Consequently, in most use cases,
query variables correspond to DPs.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 23

Evaluation >

Evaluation of HyDPD-B

Used the same dataset as used for HyDPD [8]

Due to resource constraints, we focused on three common patterns from each of the major pattern
categories:

= from the creational patterns, Factory Method;

= from the structural category, Adapter;

= from the behavioral patterns, Observer.

25 unique single-pattern code projects per pattern small single-pattern code projects from public
repositories, 49 in Java and 26 in C# (mostly from github and the rest from pattern book sites, MSDN,
etc.). They were manually verified and labeled as examples of a specific pattern.

srcML supports these two popular programming languages and the mix of languages demonstrates
programming language independence.

For HyDPD-ML training data, we applied hold-out validation, selecting 60 of 75 projects (20 per
pattern category), with between 60-75% of the code projects being in Java and the remainder in C#.

To create the ML test dataset, the remaining 15 projects (5 per pattern, 3 in Java and 2 in C#) were
duplicated and their signal words removed or renamed, resulting in 30 test projects (10 per pattern).

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 24
Embeddinas. and Micropattern Rules"

Evaluation >

Evaluation of HyDPD-MP (Bayesian Network without ML)

Performance:

o Repeated cross-validation was used to test the performance of the rule-based system. Simple cross-
validation showed high variance leading to inaccurate results. Thus, 5-fold cross-validation with 5
repetitions was used, resulting in 25 runs and a more accurate estimation.

e The mean was 0.917 and the median 0.944, with the distribution skewed due to outliers.

e Hence, accuracy of HyDPD-MP for these 3 DPs using an 8 MPs ruleset is on par with the 0.91
accuracy of our previous HyDPD-GA system [8].

Confusion matrix:

o To determine if the results vary across different DPs, a
confusion matrix was created using 5-fold cross-validation as
shown in the figure.

factory method

True label

o Adapter performed worse than the other patterns and was
more frequently misclassified as Observer, an indication of
some similarity between the DPs. Apparently, the ruleset does
not properly distinguish Adapter from Observer. This result
could likely be improved via better fitting Adapter rules, or via
more restrictive Observer rules. e

Predicted label

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph 25
Embeddinas. and Micropattern Rules"

Evaluation >

Evaluation of HyDPD-ML

To evaluate HyDPD-ML, which utilizes graph
embeddings, cross-validation was used, with
the confusion matrix shown.

adapter

Classification errors exist across all classes, yet
no clear bias can be detected. Observer had
the worst recall rate with 0.90, Adapter 0.93,
and Factory Method with 0.97.

factory method

True label

observer

adapter factory method observer
Predicted label

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph
Embeddinas. and Micropattern Rules"

25

20

15

10

26

Evaluation >

Evaluation of HyDPD-ML Variant detection

DP variant datasets are difficult to acquire since most

example DP projects intend to exemplify the reference DP.

To evaluate HyDPD-ML for unknown pattern variant Adapter 2 Adapter
detection, DP variations were removed from the training Adapter 4 Adapter
dataset and moved to a test set containing only variations. Adapter 7 Adapter
As seen in the table, 6 out of 8 variations were correctly Factory Method 17cs Adapter
classified. The recall rate for Adapter was 1.0, Observer Factory Method 2 Factory Method
was 0.66, and Factory Method was 0.5. Observer 12 Observer
. . Observer 13cs Factory Method
On average, accuracy is 0.75. While worse than the]
Observer 18cs Observer

estimated general accuracy of 0.95, it shows HyDPD-ML is
somewhat capable of classifying unknown pattern
variations.

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph
Embeddinas. and Micropattern Rules"

27

Evaluation >

Evaluation of Combined HyDPD-B

To evaluate the performance of the combined HyDPD-B,
repeated cross-validation was performed. HyDBD-ML was
trained on the same dataset as the Bayesian network.
HyDBD-B (HyDPD-MP and HyDPD-ML combined) reached an
accuracy of 0.944.

While the Bayesian network is quite performant, it outperforms
HyDPD-GA only by a very small margin.

HyDPD-ML performs better than the Bayesian network.

The rule set could be improved, as there is lot of potential gain

by introducing more fitting rules.

= This was not performed in the context of our current work as this
could lead to a risk of manual overfitting of the available dataset.

Combining the Bayesian network with the ML leads to a

performance almost on the same level as ML itself.

However, the new solution HyDPD-B is now more flexible for

0.95

0.90

0.85

0.80

incorporating expert knowledge to continually improve and refine

results

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules"

o o
{p(*- S &
& o &
& & S
& &
® &

X
vf

28

Conclusion >
Conclusion

e This paper described our hybrid DPD solution concept HyDPD-B, which uses a Bayesian network to
integrate a graph-based expert rule system using micropattern detection (HyDPD-MP) with a ML
system (HyDPD-ML) using graph embeddings.

e Via a Bayesian network, inexact DP matching via probabilistic reasoning is supported with a finer rule
definition granularity via micropatterns.

e The Bayesian network provides a flexible framework for probabilistic reasoning that is comprehensible
and interpretable for humans.

e Our simple DP rule language (DPRL) was introduced to integrate developers as experts in defining DP
and MP rules.

o Whereas HyDPD-MP can support DP localization and known variant detection via MPs, HyDPD-ML
only indicates a DP is contained somewhere in the dataset.

o HyDPD-ML can detect unknown DP variants, yet with less accuracy than standard DPs.

e This could be improved with larger DP training and variant test datasets, but these remain challenging
to acquire. Since the Bayesian system is dependent on manual knowledge engineering, future work
will investigate its viability and scalability regarding DP variant detection.

e Future work includes expansion across all GoF DPs, measurements against benchmark pattern
repositories and open source projects, and a comprehensive empirical industrial case study

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: - A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

Embeddinas. and Micropattern Rules" 29

References

14,
15.
16.
17.
18.
19.

Ji. A
el it

35. IEEE Press, 2015.

mngam«l«’ensm n, Pmcpﬁﬂhmmr\%&%dmme &

ation of

R R G
mElem\gg%hsang ‘}r\md% soﬁware

f Reusable Object-Oriente ‘earson Educa(\on India, 1995.
merlad, and M. Stal PanemOnenled Software Architecture: A

n Patterns: El
sschmann, R. Meun o
e o N gt Boley & o sbhs:
G. A-Obeidallah, M, Petridis, and S Kapetar
Intemational Journal of Software Er
H. Yarahmadi and S. M. H. Has!

iR 7k(|3 p;; 1,97 eson patem skectin apraces”

1 Gtion aproaces: A syt o f e
gt At e noLeRewew X 58456 0 o Pt P Ao
RS B sirac "ﬁgés’“‘w&‘,&’“’f IOyISS ionats Sofuye Desin Paton Recogiion Atoss
ﬁd‘@oﬁ? SRR AARAXS ﬁacﬁneq_eemmg ‘Approach Towards Automatic Software Design

aten Resoon Ao Ml Eroomring | shueges, - mratonlJoure on Adances n Sofare,
B“ RPN P o Kot eﬁenswe 3ppioch 1o the recovery of design pattern instances based on

minej,

Syste
L 2eract ¥ Sl
M, Or

’Evﬁu«mn hockes Bt JHEE

g5 2 DSL-civen graph matting
S %\%’ ?n&?&a??f&‘ﬁ?”&n"“‘ﬂ"m"s Eghesen (&%ﬁuéﬁ‘?\‘
el 5131, IEEE, 2076,

a'ﬁé‘g ﬂoﬁﬁ%’imq o e b e e b AR el
P A K Duived, and $ K Rath “Delection of design
e correlation; onsl Cont. on Contemporary Campong Pp. 208-213, IEEE, 2015.

by sys«emc‘z“ﬁh@fﬁ’&m Gt EEe R i R e e

N Zaron. . . Fortr, §rAF Sl O i paphine caring s o dsgn el et
e 4o, 105 0
B § Somiere o, 1050, i dala i o xtctdesgnpatos fom Uned Touramer
ying g g
I Compuatoe gligence and Comes g 13, ECE
RFec it DRI SR T B G mlnmg enhanced by machine leaming 215t IEEE
Pk

I C?‘nf on sy Harierepes '|cs"ns) JEEE po 255501 205 o
shite 5 X&Taby g Metics and T e o S e ghaleS R

ion models
Rt R

pattern us{ggom isomorphism and normalized

-orjents ram

2K, and Y. FL
Pacrine \eammg ications,

©2023 Roy Oberhauser | ICSEA23: "Design Pattern Detection in Code: A Hybrid Approach Utilizing a Bayesian Network, Machine Learning with Graph

s

E“"M"’“e"‘s%"a" s JB@%V&‘.%@?‘Q““%W& 0 B Kooedge-Based ;

2.

K., Dwivedi, A. Tirks d S, th“ tter classification-based techr
T2 Al g fon e o s i
H. Thaller, L Linsbauer, and A yed *Fealuré maps: A comprehensible software representation for design

58?35" m o9 JEEE 26 temailonal confernce on sonwarg analysis, evolution and reengineering (SANER
A Hasheminejad, and M. H. Zangooei, “Source code and design conformance, design
e detection fom source. ol by dassiicgon Spproacs Applied SoftComputing, 26 pp 357 367 2015
Wang, H. Guo, H. Liu, and A Tuzzy hatching approach for design patiem mining,”J. nteligent &
Fuggy Sysems, 0. 2108 230 5560, 2017
usar, T. Zhao, and G, Yar, ‘Rule-based detection of design pattems in program code,” Infl J. on Software
"Toals for Tectinol y Tersie vl T 103 pp 31535, 207
. Lebon and V, Tzerpos, Ene-pineg desn patem deteton” IEEE 36h Amual Computer Sofvere and

gl ?'ﬁcﬁé'n'fé'sesﬁe PR 24837 Ping metric-based lering to improve design pattem detecton
e L R S e g SRS eheaton based techmiques”
e Copue Smenm 12 5,0 5,5 ez o stctrs fordosion afons
Celechon Pl T St o e 89 e 1815358 %“f on ptt
Lp' el P 'é?" oSN %M‘a UEF"?L"D‘:"J& ey ign pltem detecon
ong, ¥ Zhao, and Y St ‘A maltbcoased ngd s panems JEEE Trarsocions on
ﬁyﬁ’e"f 8- 255 s?!ybeﬂwiﬁng?"fmﬁysb "m"d el A e Cp——

ggemergs I nm‘s 3 r‘;\m mqg o1 e 2919 EEERCH tematonal Conibonce on advantes in socal
lédge graph embedding based method for drug discovery from biomedical

m %ﬁ\me p S04 8415, 2006,
§an 'ﬁss ﬁE wdﬁnwh 2] 'Detemm
gnmchmg andslc ana\ys\s in ormalmn Ted! m\%é nl, 23(3), pp. 139-

e, A Ramire. F. Sovr, Romero, “GEML A arammar-based evolutionary machine learming
Sy des\grrpaltem de AR of Systems and Software, 175, p. 110919, 2021.
. Kot an gec A Featre Basel Mothod for Detecting Design Patterns in Source Code.”
WEBERY, b Db i J Ma\elu: Ligheeight tanslomatonandfactextacionwih he L ool IEEE
i intemational working conference on source cock is and manipulafion, IEEE, 2011, pp. 173-184.

n
setal, ok ihs.” Proc. 2018 Intemaional Corte

SRS B . PB4 g ey o Poc atonel Conference
S Ko M. Aoy), Suyey op soare dedgnpatem speofcaton anguage.” ACM Compng
% §mihend 0. St “An elemen tem catal

Surveys (CSUR), vol. 49,
lesign Tect
Al e D R B e

s patns; a e appog ased on

ranort convolion
Murphy, Machine Learning: A Probabilstc Perspeciive. MIT press,

30

Embeddinas. and Micropattern Rules"

