
SOURCE CODE ANALYSIS
OF GITHUB PROJECTS
FROM E-COMMERCE AND
GAME DOMAINS

Doğa Babacan, Tugkan Tuglular

Presenter: Tugkan Tuglular

tugkantuglar@iyte.edu.tr

Izmir Institute of Technology

ICSEA 2023

Assoc. Prof. Tugkan TUGLULAR, Ph.D.
Izmir Institute of Technology, Turkey

Tugkan Tuglular received the B.S., M.S., and Ph.D. degrees in Computer Engineering from Ege
University, Turkey, in 1993, 1995, and 1999.

He worked as a research associate at Purdue University from 1996 to 1998.

He has been with Izmir Institute of Technology since 2000.

After becoming an Assistant Professor at Izmir Institute of Technology, he worked as Chief
Information Officer in the university from 2003-2007.

In addition to his academic duties, he acted as IT advisor to the Rector between 2010-2014.

In 2018, he became an Associate Professor in the Department of Computer Engineering of the same
university.

He has more than 75 publications and an active record of duties with international and national
conferences.

His current research interests include model-based testing and software quality with machine
learning support.

Objective

- Similarities and differences between

repositories depending on their source

code analysis result attributes

- Each topic separately:

- E-commerce

- Game

- Public repositories from GitHub

What is used?
GitHub utilized

• Reach repositories’ informations
• Clone repositories
• Upload to Sonarqube for inspection

Python language is used to:

Sonarqube is the main tool of this project

WHAT IS
SONARQUBE?

Sonarqube is a tool for analyzing the source
code and showing the code quality of the

project as a result.

7m users use Sonar products

A tool developed by Sonar, developer of:

Sonarlint Sonarqube Sonarcloud

Difficulties with Sonarqube
- Many version problems

- Only Maven utilized programs work without any setting

- Sonarqube actually must be set for each project separately

- Each test directory is different for different projects so user must show
each directory to Sonarqube. So we skipped tests.

- For this reason managed to do assessment only on 25 projects:

- 10 from game category

- 15 from e-commerce category

- These are the only ones that can be downloaded from Github then
uploaded to Sonarqube automatically from the first 100 projects.

How to Get Repositories from GitHub

«https://api.github.com/search/repositories?q=e-
commerceis:featured+language:java&sort=stars&order=desc&per_page=100&page=1»

- The line is used to for a get request to retrieve the first hundred repositories in GitHub.

- With the help of GitHub package and a token retrieved from GitHub, able to send multiple
requests in small periods.

- The directory is named specificly in a pattern to carry over the star count to the tables, we also
use the directory name for the project key in Sonarqube.

- «3091E-c-o-Mshopizer» is an example directory name where 3091 is the stargazers value, ‘E-
c-o-M’ shows that it is an e-commerce project, ‘shopizer’ is the name of the project. By
separating these values, it is easy to add the stargazers value to our dataframe.

- We imported the os library in Python and used «os.mkdir(path)» to create the path for cloning the

repository where path is combination of parent directory which is for example

«C:/Programming/ProjectRepo/» and the directory which is «3091E-c-o-Mshopizer»

- If ‘pom’ file exists (Maven specific file), with utilizing Python again we write to console the following

line; «git clone {repo_url} {directory_name}»

- «repo_url» is the cloning link of the chosen GitHub repository, for instance
«https://github.com/shopizer-ecommerce/shopizer.git»

- «directory_name» is still the same which is «3091E-c-o-Mshopizer»

- By entering this line we start cloning the repository

How to Get Repositories from
GitHub cont.

- We connect to Sonarqube by using the installing and importing the «SonarQubeClient» we
pass the arguments, username, password and url of the Sonarqube which is in our case is
«http://localhost:9000/»

- We create the sonarqube project for each repository by
«sonar.projects.create_project()» where name and project parameters are both the
directory (3091E-c-o-Mshopizer)

- Then we upload the repository to Sonarqube by a console command entered by using
os.system with command such as «mvn clean verify sonar:sonar -D
maven.test.skip=true -D sonar.projectKey={projectKey} -D
sonar.host.url=http://localhost:9000 -D sonar.login=sqa_***********»

How to Upload Repositories to
Sonarqube

- To recieve the source code analysis results from the Sonarqube, Sonarqube api package

in Python is utilized. With the right token, it is easy to send requests to get each attribute

- Then we place them in a dictionary and convert them to dataframe and save as csv to

work on it on the Jupyter Notebook.

- In Jupyter Notebook we normalized the data, created a correlation matrix to see the

realtionship between our features.

- Finally we created elbow graphs and cluster graphs between the attributes we have

selected such as comment lines vs. code smells, bugs vs. classes

How to Get Source Code Analysis
Results and Utilize

Attributes
- Bug: A coding mistake that can cause problems during runtime of the software

- Vulnerability: A certain point in the code which is open to attack.

- Code Smell: An problem which causes the code to be less understandable and difficult to maintain.

- Violations: Any form of issue is also called violations. Prefixes change depending on the importance of the violation, it can be blocker,

critical, major, minor and info.

- Blocker: It has a high chance to affect the behavior of the software in production. Sonarqubes suggestion is to fix the violation

immediately.

- Critical: It has a low chance to impact the behavior of the software in production or there is a security flaw that needs attention.

Suggestion of Sonarqube is to review the code as soon as possible.

- Major: A flow in quality where these issues can cause huge reductions in productivity of the development phase of software. These

can be unused parameters, duplicated blocks etc..

- Minor: A flow in quality where these issues cause small reductions in productivity of the development phase of software. Too long

lines, number of ‘switch’ cases lower than 3 are some examples of minor violations.

- Security Hotspots: A piece of code which is security sensitive, however it is not as important as vulnerability, these hotspots may not

have an impact on the whole software unlike the vulnerability.

- Lines: Number of physical lines.

- Lines of Code: The number of physical lines that contain at least one character, however this character will not be counted if it is a

whitespace, tabular space or part of a comment.

- Functions: Number of functions.

- Statements: Number of statements.

- Complexity: Complexity (cyclomatic complexity) is a type of metric where the number of paths in a code is calculated and minimum

value of function is 1 . When the control flow of a piece of code diverges, the complexity increases. This calculation may differ

depending on the language being used. (For java keywords incrementing the complexity are: if, for, while, case, catch, throw, &&, ||, ?)

- Cognitive Complexity: Cognitive complexity is a more detailed way of inspecting the complexity of a code. It is not a quantitative way

of measuring as it is in cyclomatic complexity, it also counts in the degree of interconnectedness and abstraction or indirection in a

piece of code. Cognitive complexity looks for how understandable the code is and how much it is easy to maintain.

Attributes cont.

SOURCE CODE ANALYSIS RESULTS OF REPOSITORIES WITH TOPIC
‘E-COMMERCE’

Name Bugs Classes
Code

Smells
Cognitive

Complexity
Comment

Lines
Complexity

Duplicated
Lines

File
Complexity

Functions Lines Ncloc
Security
Hotspots

Stars Statements Vulnerabilities

demo-microservices 2 70 19 8 24 80 0 1.1 114 3118 2641 1 29 144 0
DevOps-E-commerce- 4 47 60 8 99 104 0 2.2 149 2073 1506 6 17 218 14

double-shop 3 196 49 204 263 650 156 3.3 636 8363 6211 4 34 1246 0
e-commerce-database 0 47 20 2 3 71 0 1.5 57 1400 1110 1 15 111 0

eCommerce-JavaBackend 5 37 134 50 85 207 92 5.6 192 1942 1453 4 13 356 0
ecommerce-microservice-

backend-app 7 237 34 8 1 389 1172 1.7 508 12267 7906 1 84 597 0
E-Commerce-Spring-Boot 2 40 116 101 32 182 128 4.6 205 1738 1326 3 63 316 0

eCommerceWebsite 143 153 711 1776 1628 2326 16441 7.9 1166 67448 54279 103 41 6788 209
eMusicStore eCommerce

Website 2 13 89 30 151 98 0 7.5 86 1272 800 15 15 271 3
open-commerce-search 37 298 794 2925 3420 3349 362 13.1 1151 26892 18289 4 31 6528 1

SBootApiEcomMVCHibernate
8 166 267 291 287 1403 217 8.7 1245 10293 7534 13 15 2246 0

shopizer 146 1193 4049 6911 7579 10445 6205 9 7606 110936 73042 35 3091 25118 525
ShoppingCart 50 44 99 122 291 378 161 4.9 293 13059 11795 31 297 572 5
shopping-cart 55 37 150 216 138 314 464 5.6 220 34203 29869 89 56 1303 60

spring-restapi-ecommerce 7 58 57 75 52 360 230 6.3 320 3721 2517 9 42 687 2

The Original Data Received From Sonarqube

Correlation Analysis of Attributes
of E-Commerce Repositories

Comment Lines vs Code Smells
Graphs of E-Commerce Repositories

There seems to
be two outliers

Box Plots of Comment Lines and Code Smells

Linear Regression of Comment Lines vs Code Smells After
Removing the Outliers

0.294x+0.1

Number of Bugs vs Number of Classes
Graphs of E-Commerce Repositories

There is almost
no outliers to
remove

Box Plots of Number of Classes and Bugs

Linear Regression of Number of Bugs vs Number of Classes
After Removing the Outliers

-0.63x+0.772

SOURCE CODE ANALYSIS RESULTS OF REPOSITORIES WITH TOPIC
‘GAME’

The Original Data Received From Sonarqube

Name Bugs Classes
Code

Smells
Cognitive

Complexity
Comment

Lines
Complexity

Duplicated
Lines

File
Complexity

Functions Lines Ncloc
Security
Hotspots

Stars Statements

AsciiTerminal 16 11 61 404 62 352 340 50.3 93 2247 1803 3 24 928
BatBat-Game 21 45 116 633 276 810 198 18.8 298 5271 3906 12 15 1999
gameserver 39 475 2126 2387 2749 4739 6956 11.7 3225 39201 26089 71 17 10047

GameShardingDb 21 69 403 730 771 748 50 11.5 379 6366 4286 7 43 1974
jcards 0 10 49 44 286 106 0 11.8 66 1250 509 1 31 163

lwjglbook-leg
197 1748 3446 9166 5755 20724 130553 14.4 13388 155460 116949 203 564 59028

OpenFighting 35 22 60 81 74 199 110 9 147 1559 1049 2 21 384
playn 64 398 1649 2478 6800 6168 2431 24.1 4412 46763 28753 10 239 11889

SypherEngine 3 67 233 346 622 731 164 9 462 5984 3814 4 43 1514
WraithEngine 1 101 19 307 2283 711 0 8.2 577 9081 4110 0 50 1289

Correlation Analysis of Attributes
of Game Repositories

There are some outliers
to remove

Comment Lines vs Code Smells Graphs of Game
Repositories

Box Plots of Code Smells and Comment Lines

Linear Regression of Comment Lines vs Code Smells After
Removing the Outliers

0.315x+(-0.025)

There are some outliers
to remove

Number of Bugs vs Number of Classes
Graphs of Game Repositories

Box Plots of Number of Classes and Bugs

Linear Regression of Number of Bugs vs Number of Classes
After Removing the Outliers

-2.586x+0.755

Conclusion

- When correlation diagrams compared, it seems that game topic is much more different

than e-commerce topic and e-commerce is behaves as expected unlike game topic.

- This may be interpreted as e-commerce field developers follow certain paths, patterns

and rules that are familiar to the software developers in general unlike the game field.

- The link will navigate to the GitHub page of the project where all the codes that have been

used can be found:

«https://github.com/dogababacan/RepositoryInspectionWithSonarqube.git»

