
Design elements for a Space Information
Network Operating System

dr. Anders Fongen
Norwegian Defence University College, Cyber Defence Academy, Lillehammer
email: anders@fongen.no

ICSEA 2023, Valencia, Spain, October 2023

Presenter’s bio

Anders Fongen

● Associate Professor, Norwegian Defence University College
● Field of research: Distributed Systems, Networking security
● PhD in Distributed Systems, Univ. of Sunderland, UK, 2004
● Career history

○ 7 years in military engineering education (Associate Professor)

○ 10 years in defence research (Chief Scientist)

○ 8 years in civilian college (Associate Professor)

○ 11 years in oil industry

○ 6 years in electronics industry

2

Introduction

● The evolution of satellite communication?
○ Application services (“Cloud computing in space”)

○ Higher system complexity (larger state space)

● What are the advantages?
○ Very low latency (as low as 3 ms)

○ Global coverage

● Interesting properties of a Low Earth Orbit (LEO) system:
○ Predictability of positions, links, routes and workload

○ Long idle periods (due to inhabited surface) mixed with traffic peaks

● Viewed as a problem of Distributed Computing
○ having a set of distinct properties

3

What is a SIN (Space Information Network)?

● A collection of communicating LEO satellites
● Able to serve terrestrial/airborne client

○ Communication services (e.g., IP transport, VoIP, Publish-Subscribe comm.)

○ Discovery Services (DNS, Service Brokering…)

○ Storage Services (Content Distribution Network, caching, session states)

○ Application Services (Collaborating editing, Situational awareness …)

● Resource constrained / disadvantaged
● Predictable workload and link availability
● “Mobile” system: Stationary clients, mobile infrastructure
● Rapid hand-over of client connection and client state

4

Population “heat map” from satellite footprint

5

Why is a distinct middleware/OS needed?

● A SIN is distributed and mobile in its very core
○ basic MW/OS services must be “Mobility-aware”

○ even server layers must conduct handovers

○ resource discovery, invocation and migration is a formidable problem

● Mobility and resource management affects many interfaces
○ container <-> component

○ client <-> container

○ container <-> resource management

● A set of software services should provide life-cycle management for
components and containers (e.g. Docker)

6

Which are the distinguishing design factors?

● N-layer structure
○ Service providers need to be replicated

○ Loop-free graph (DAG)

○ Frequently rebuild of the invocation tree

● Handover operations
○ Surface nodes (client and service providers) are stationary

○ First tier of service providers must be visible to ground client (frequent handover)

○ Links between satellites may require handover if path becomes too long.

● Stateful migration
○ Make “session object” accessible for appointed node after migration

7

Which are the distinguishing… ?

● Link and load predictability
○ Link availability and link budget can be estimated

○ Offered load can be estimated based on

population statistics

○ Fewer discovery protocols needed

● Fail-over arrangement
○ Fail detection and fail-over should be conducted in

the Management Plane, to relieve the clients from uncertain fail detection

● Security and trust management
○ “traditional” PKI certificate management has too high comm. requirements,

authentication and authorization control should be done in one round trip

8

SIN-OS components

9

Essential services in a SIN-OS
● Non-volatile storage

○ Files, OODBMS, RDMS, tuplespace. Distributed

● Shared data segments
○ Provides transaction protection, update ordering semantics, update notification ….
○ Clients must migrate in a synchronous manner

● Cooperative caching
○ Sharing immutable objects, coming from, e.g., lookup/discovery services

● Session state objects
○ Keeping session state variables accessible across handover operations

● Discovery services
○ Satellite positions can be predicted, but not the location of services

● Certificate & key store
○ Certificates likely to be different from X.509, with simpler validation methods

10see: thinkmind.org

API collections

● Client API
○ Invokes services in satellite host SIN-OS (not service container)

○ Methods used for app management, others for invocation
○ uploadApp, StartApp, ConnectApp, invokeService, requestHandover

● Container API
○ Offered by the SIN-OS to the container

○ Resource allocation, life-cycle management

○ loadApp, startApp, suspendApp, destoyApp, executeHandover

● Component API
○ Access to SIN-OS services for storage, communication, synchronization etc.

○ Callback methods for life-cycle management

11

Conclusion
The problem: How could the characteristic problems in a SIN be solved by a well
organized middleware/operating system?

● A SIN exhibits distinct problem due to the orbital cycle and predictable offered
load (from surface clients)

● A SIN should provide a runtime environment for application components with
proper separation and resource management, as well as the usual set of services
for the execution (storage, communication,synchronization etc.)

● The application components are likely to be executed in a container
environment, with a well defined API offered by the SIN-OS

● A suggested set of services and API have been presented in the paper.

Thank you for your attention, any questions? 12

