

Data, Knowledge and Software Engineering





#### Three-step Decision Framework for Planning Software Releases

José del Sagrado , Isabel M. del Águila, and Alfonso Bosch Dpt. Informatics. University of Almería (Spain)

Speaker: Alfonso Bosch – abosch@ual.es



Data, Knowledge and Software Engineering





Alfo

#### Alfonso Bosch - Profile

Lecturer at Informatics Dept. in the University of Almería since 1988. Topics: Database Administration, Intelligent Systems, Business Intelligence, Data Viz Research Group: Data, Knowledge & Software Engineering Research Activity: Artificial Intelligence & Information Systems, applied to real problems (agriculture, energetic efficiency, software engineering). Results: software systems for greenhouse design, decision support systems for intensive cultivations and olive grove. (registered at intelectual property office). Scientifical Production: Above 60 contributions, including international and national magazines and workshops. Actual Projects: Renewal of Software Based Software Engineering Spanish Network. Management Positions: Vice principal of the Politechnical Engineering School, Director of the Teaching Organization Secretariat, Secretary of the Politechnical Engineering School and Coordinator of the Degree in Computer Engineering



#### I.Introduction

- 2. Software Release Planning Framework
- 3. Case Study
- 4. Appraisal of the Framework
- 5. Conclusions and Future Work



### I. Introduction

- Systems are large and complex, with interconnections to similar applications
- Worldwide development: software developers, designers, testers, project managers, and users
- Requirement Engineering needs to be dynamic and collaborative (selecting in/out requirements)
  - Decision Support Tasks based on risks, costs and benefits
  - Timelines, Dependencies and Constraints
- Assessment made by implied stakeholders
- ¿What is the best solution?

# I. Introduction

- Three questions
  - Who assesses the attributes of the requirements?
  - What is the best set of requirements?
  - Do we have an agreement to build the release?
- Three separate processes framework:
  - stakeholder identification
  - elicitation of candidate requirement sets

• next release

- Architecture proposal -> Case Study
- Discussion of limitations and scope



- I. Introduction
- 2. Software Release Planning Framework
- 3. Case Study
- 4. Appraisal of the Framework
- 5. Conclusions and Future Work

### 2. Software Release Planning Framework

Workflow division into three independent and connected stages



# 2. Software Release Planning Framework Stakeholder Identification



Stakeholder Candidate Set Stk =  $\{sk_1, sk_2, ..., sk_q\}$ Salience: power, legitimacy and urgency (interviews) wpij, wlij, wuij: values given by interviewee i to skj

$$p_j = \sum_{i=1}^h w p_{ij},$$
  

$$l_j = \sum_{i=1}^k w l_{ij},$$
  

$$u_j = \sum_{i=1}^q w u_{ij}.$$

Different strategies to select the most influential: clustering or weighting

Result: set of m stakeholders allowed to propose the requirements

# 2. Software Release Planning Framework Stakeholder Identification



# 2. Software Release Planning Framework Elicitation of Candidate Requirement Sets



Candidate Requirements  $R = \{r1, r2, ..., rn\}$ 

v<sub>i</sub>: subjective value assigned by stakeholder sk<sub>i</sub>to r<sub>i</sub> W = {w<sub>1</sub>,w<sub>2</sub>,...,w<sub>m</sub>} stakeholder weight (importance)

For  $r_i \in R$ , its satisfaction  $s_i$  is:  $s_j = \sum_{i=1}^m w_i * v_{ij}$ 

Effort for developping rj E =  $\{e_1, e_2, \dots, e_n\}$ Cost limit (amount of resources): B

Optimization problem: Find U, candidate requirement sets to be included in next release using Pareto

dominance

 $\max \sum_{j \in \mathbf{U}} s_j, \\ \min \sum_{j \in \mathbf{U}} e_j, \\ \text{subject to} \qquad \sum_{j \in \mathbf{U}} e_j \le B$ 

# 2. Software Release Planning Framework Elicitation of Candidate Requirement Sets

Alternative formulation: Constraints on implementation order

• Implication, (ri implies rj)

Collect / Estimate

requirement' attributes

Set up optimization

problem

Obtaining Pareto front as

problem solution

- Combination interaction, (ri combined with rj),
- Exclusion interaction. (ri excludes rj)

Downsizing result set





Candidate Requirement Sets Best Requirement Set

### 2. Software Release Planning Framework

#### Next Release Agreement

Choose the set of requirements to be implemented Quality indicators: Visual aids to guide decision makers Let  $U \subseteq R$ : solutions under analysis

Productivity: prod(U) = sat(U)/eff(U)

Coverage:  $\mathbf{sk}_i \in \mathbf{Stk}$   $\mathrm{stcov}_i(\mathbf{U}) = \sum_{j \in \mathbf{U}} v_{ij} / \sum_{j \in \mathbf{R}} v_{ij}$ ,







- I. Introduction
- 2. Software Release Planning Framework
- 3. Case Study
- 4. Appraisal of the Framework
- 5. Conclusions and Future Work



Dataset: Replacement Access, Library and ID Card project (RALIC)

Combine Access control systems at University College London (UCL)

RALIC Stakeholders Identification Recommendations Network

I44 stakeholders

138 requirements: 10 objectives, 48 requirements, 104 specific requirements Effort: 4 to 7000 persons-hour

75 RALIC stakeholders use the 100-point method

83 requirements left No interactions

Relevant Stakeholders Identification: Clustering



12 stakeholders left





#### **RALIC Elicitation of Candidate Requirement Sets**

From Stk, R and E<br/>and SatisfactionOptimisation Problem $\max \sum_{j \in \mathbf{U}} s_j,$ <br/> $\min \sum_{j \in \mathbf{U}} e_j,$ <br/>subject to $B_1: 20\%, B_2: 25\%$ <br/>From total effort

Resource limit interval: No upper resource limit Discard solutions with lower effort

For RALIC, B<sub>1</sub>=12473.3, B<sub>2</sub>=13304.8

Pareto front: Greedy Algorithm

For each effort value in the range [B<sub>1</sub>,B<sub>2</sub>] Find solution with max number of requirements Iterate replacing requirement with valid effort limit Check dominance and relace if it's higher

Simple and produces a Pareto front (not exhaustive)



#### **RALIC Elicitation of Candidate Requirement Sets**





Effort (hours/person)



#### **RALIC Next Release Agreement**

Visual Indicators Coverage



Best candidate solutions seems 13 or 14 (Not for Productivity) Human process: Pairwise comparisons (ex. 12 and 7) Other factors (non quantitative): Risk -> Better 7



#### **RALIC Next Release Agreement**



Better to use quality indicators: summarise the information





- I. Introduction
- 2. Software Release Planning Framework
- 3. Case Study
- 4. Appraisal of the Framework
- 5. Conclusions and Future Work

# 4. Appraisal of the Framework

Previous strategies: three separate tasks Best requirements set: optimization problem Do not work in identification and priorization

Stakeholders identification Manually (experience & intuition) Systematic (consistent, precise and complete result) Do not have a requirement selection stage

Solution Selection in Pareto front: Complex techniques

The three stages have not been in a unique framework



- I. Introduction
- 2. Software Release Planning Framework
- 3. Case Study
- 4. Appraisal of the Framework
- 5. Conclusion and Future Work

# 5. Conclusion and Future Work

Linking three complex software engineering problems Global view of defining the next release goal

Framework provides a pragmatic approach

Stages Stakeholder Identification Elicitation of Candidate Requirement Sets Next Release Agreement

Manage and improve tools/algorithms for each one Improve the whole process Validity: Application to a real problem (RALIC)

Future work: Application to other software projects with data Investigate the impact on the solutions in NRP

# Thank you very much

abosch@ual.es