Polysaccharide-based materials with antibacterial properties

ANNA KUTOVÁ*, KLAUDIA HURTUKOVÁ, ONDŘEJ KVÍTEK, VÁCLAV ŠVORČÍK

*anna.kutova@vscht.cz

DEPARTMENT OF SOLID STATE ENGINEERING, UNIVERSITY OF CHEMISTRY AND TECHNOLOGY, PRAGUE
Anna Kutová *1993

- Master degree at UCT Prague – Drug production, 2019
- Summer 2019 – internship at Manipal Institute of Technology (MIT) in India
- Ph.D. at UCT Prague – Drugs and Biomaterials

Publications
Bacterial nanocellulose (BNC)1

Produced by some particular bacterial strains
Its fibre diameter does not exceed 100 nm
Hydrophilic, biocompatible
Excellent mechanical properties, high porosity, high crystalinity

Chitosan (Chit)2

Deacetylation of chitin from crustaceans shells
Non-toxic, biocompatible, promotes wound healing
Antibacterial properties

!!! The chitosan content could negatively affect some properties (e.g. mechanical3 or biological4) !!!

Graphical abstract

Modified Hestrin-Schramm culture medium inoculated with *Komagataeibacter sacrofermentans* bacterial strain → BNC growth → Harvesting, washing → Immersing into chitosan solution for 24 hours → Lyophilization → Composite material BNC-Chit

1 g of BNC immersed into 72 ml of Chit solution (5 g · l⁻¹)
Chitosan degree of deacetylation 76 %
Composite preparation

Chitosan content: approx 17% (w/w)

FTIR\(^1\,^2\)
- 3346 – OH stretching
- 3290 – NH stretching
- 2900 – CH stretching
- 1649 – amide I
- 1537 – amide II
- 1300-1500 – C-C-H, C-O-H bending vibrations
- 1100-1300 – glycosidic bond
- 950-1100 – C-OH
- 600-900 – glucose cycle

Fig 2: FTIR spectrum of Chit (red), prepared composite BNC-Chit (blue) and BNC (black)

Surface morphology

Fig 3: SEM image of pure BNC showing the nanostructure of the material with present pores.

Fig 4: SEM image of BNC-Chit composites showing the preserved nanostructure of BNC. However its pores are clogged with Chit.

Fig 4 shows the penetration of chitosan into the nanostructure of cellulose fibres in the BNC-Chit composite leading to a less porous surface and less pronounced fibrous character compared to pure BNC at Fig 3.
Mechanical and swelling properties

<table>
<thead>
<tr>
<th></th>
<th>BNC</th>
<th>BNC-Chit</th>
<th>BNC lit.(^1)</th>
<th>BNC-Chit lit.(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitosan solution ((c \approx 0.5 \text{ g} \cdot \text{L}^{-1}))</td>
<td>-</td>
<td>5 mL</td>
<td>-</td>
<td>100 mL</td>
</tr>
<tr>
<td>Loading velocity</td>
<td>10 mm(\cdot)min(^{-1})</td>
<td>1 mm(\cdot)min(^{-1})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Young´s modul [MPa]</td>
<td>39 ± 7</td>
<td>29 ± 12</td>
<td>83 ± 7</td>
<td>341 ± 37</td>
</tr>
<tr>
<td>Elongation [%]</td>
<td>9.1 ± 1.2</td>
<td>7.7 ± 2.4</td>
<td>4.7 ± 0.7</td>
<td>1.3 ± 0.3</td>
</tr>
<tr>
<td>Tensile strenght [MPa]</td>
<td>3.6 ± 0.8</td>
<td>2.1 ± 0.9</td>
<td>4.5 ± 1.0</td>
<td>3.8 ± 0.5</td>
</tr>
<tr>
<td>Swelling ratio [%]</td>
<td>7790 ± 730</td>
<td>2600 ± 690</td>
<td>8414</td>
<td>1714</td>
</tr>
</tbody>
</table>

Antibacterial properties against *Staphylococcus aureus* (SA)

These graphs show the antibacterial activity of BNC-Chit composite towards the SA bacterial strain. However, the bacteria profit from the BNC itself leading to an increase of CFUs compared to CTRL.

Fig 5: A) BNC and BNC-Chit antibacterial activity after 2 hours against *S. aureus* B) drop-plate method for BNC C) drop-plate method for BNC-Chit

Fig 6: A) BNC and BNC-Chit antibacterial activity after 24 hours against *S. aureus* B) drop-plate method for BNC C) drop-plate method for BNC-Chit

CFU: Colony forming unit
CTRL: Control
BNC: Bacterial nanocellulose
BNC-Chit: BNC-chitosan composite
Antibacterial properties against *Escherichia Coli* (EC)

Fig 7: A) BNC and BNC-Chit antibacterial activity after 2 hours against *E. coli* B) drop-plate method for BNC C) drop-plate method for BNC-Chit

Fig 8: A) drop-plate method for BNC B) drop-plate method for BNC-Chit

The number of CFUs after 24 hours was not countable. However, the decrease in the number of CFU for the composite is visible.

CFU: Colony forming unit
CTRL: Control
BNC: Bacterial nanocellulose
BNC-Chit: BNC-chitosan composite
Main results

The composite material BNC-Chit was prepared with preserved nanostructure with Chit in its pores.

The addition of Chit led to a slight decrease in mechanical properties but significant embrittlement did not occur.

The clogged pores of chitosan caused a significant decrease in the swelling ratio.

The BNC-Chit showed high antibacterial activity towards gram-positive bacteria.

Future: → Higher concentration of chitosan to provide better antibacterial properties against gram-negative bacteria but with preserved mechanical properties.
 → Cell adhesion studies.

Material suitable for biomedical applications or as packaging in the food industry.

Thank you for your attention