

Performance Evaluation of an Authentication Scheme for IoT Networks

Presented by: Chi Ho Lau (Tommy)

City University of Hong Kong, China <u>chihlau-c@my.cityu.edu.hk</u>

ICIMP 2023 Presentation

Outline

- IoT networks consist of many devices that collect information about us
 - Authentication issue
- Overview of the Blockchain-based authentication scheme
- Performance evaluation
- Numerical Results
- Conclusion

Background IoT networks

- IoT devices are heterogeneous in nature
- Connected to the Internet
- IoT networks are **huge** in size
- Embedded with sensors, software, and other technologies
- A building block of **automation**
 - Smart manufacturing
 - Smart power grids
 - Smart cities the self-driving car
 - Medical

Source: http://www.insecam.org/

- Internet of Things (IoT) networks are huge in size
- IoT networks have access to sensitive data
- "A very popular vector for gaining access to IoT devices arises due to inadequate authentication and authorization procedures." [1]
- Difficult to assess the performance of an authentication scheme
- Formal analysis does not provide quantitative results for comparison

ICIMP 2023 Presentation

Background Blockchain

- Blockchain is a **decentralized storage solution**
- Blocks are linked in chronological order by their digital fingerprint
- Difficult to forge blocks or records
- Coin-based blockchain system
 - Bitcoin, Ethereum, etc...

- The evaluated authentication scheme is based on coins
- Every device has a unique device identifier (Id)

Background Block structure

- Genesis block contains Blockchain public key (k_c)
- Configure the authentication threshold (AT)
- Each block has the **digital signature** of **HA**
- Digital signatures were produced by Blockchain private key (k_p)

Blockchain-based Authentication scheme

- Every IoT device has a unique device identifier (Id)
- Hardware authenticator (HA) has initial coins
 - Kept by the **network administrator**
 - No internet access
- Authenticated IoTs receive a certain number of coins from HA
- Own certain number of coins are considered authenticated
- Authenticated IoTs talk to each other only
- Forming an **overlay network**

Markov Diagram

Transition probability matrix :

$$P = \begin{vmatrix} \gamma_{\rm H} & \beta_{\rm p} & 0 \\ \epsilon_{\rm P} & \gamma_{\rm P} & \beta_{\rm F} \\ \epsilon_{\rm F} & 0 & \gamma_{\rm F} \end{vmatrix}$$

 β = Move to the next state γ = Stay at the current state ε = Recover to previous state

Put a Markov process {X_n} in the long run such that n →∞, the probability for each state *j* will converge to a limiting probability (π_j)

 $\pi_j = \lim_{n \to \infty} \Pr\{X_n = j | X_0 = i\}$ for i, j = 0, 1, 2.

• By substituting the transition probability matrix (*P*):

$$\pi_{0} = \frac{\varepsilon_{F}(1 - \gamma_{P})}{\varepsilon_{F}(1 - \gamma_{P}) + \beta_{P}(\varepsilon_{F} + \beta_{F})}$$

$$\pi_{1} = \frac{\beta_{P}\varepsilon_{F}}{\varepsilon_{F}(1 - \gamma_{P}) + \beta_{P}(\varepsilon_{F} + \beta_{F})}$$

$$P = \begin{vmatrix} \gamma_{H} & \beta_{P} & 0 \\ \varepsilon_{P} & \gamma_{P} & \beta_{F} \\ \varepsilon_{F} & 0 & \gamma_{F} \end{vmatrix}$$

$$\pi_{2} = \frac{\beta_{P}\beta_{F}}{\varepsilon_{F}(1 - \gamma_{P}) + \beta_{P}(\varepsilon_{F} + \beta_{F})}$$

• π_j consists of four parameters: β_P , β_F , γ_P , ϵ_F

Solving the model

- Classify the vulnerabilities between 2008-2016 into 2 levels that causing
 - Partially compromised state (V_P)
 - Fully compromised (V_F)
- Assume the average exploitation rate for V_p be E_p and V_F be E_F .
- Therefore, $\beta_P = E_p V_P$ and $\beta_F = E_F V_F$.

Type of vulnerability	Count	Percentage	Level	Possible attack
Format String Vulnerability	110	0.294709	VF	- Execute arbitrary code
Configuration	195	0.522438	Vp/VF	- Exposure of config file
				- Execute arbitrary code
OS Command Injections	208	0.557267	VF	- Execute arbitrary code
Race Conditions	377	1.010047	VF	- Privilege escalation
Link Following	389	1.042197	VF	- Privilege escalation
Credentials Management	589	1.578031	VF	- Privilege escalation
Cryptographic Issues	779	2.087073	Vp / VF	- Information leakage
				- Password leakage
Authentication Issues	920	2.464836	V _P / V _F	- Information leakage
				- Privilege escalation
Cross-Site Request Forgery	1161	3.110516	Vp	- Information leakage
(CSRF)				
Numeric Errors	1199	3.212324	VF	- Privilege escalation
Code Injection	1545	4.139317	VF	- Execute arbitrary code
Path Traversal	1686	4.51708	Vp	- Information leakage
Information Leak /	2939	7.874079	Vp	- Information leakage
Disclosure				
Input Validation	3763	10.08171	Vp / VF	- Information leakage
				- Execute arbitrary code
SQL Injection	3828	10.25586	Vp / VF	- Information leakage
				- Execute arbitrary code
Permissions, Privileges, and	4661	12.48761	VF	- Privilege escalation
Access				
Cross-Site Scripting (XSS)	6220	16.66443	Vp	- Information leakage
Buffer Errors	6756	18.10047	VF	- Privilege escalation
Total	37325	100	Vp=57.57	
			$V_{\rm F} = 67.83$	

Table. 1: Vulnerability counts and categories from 2008-2016

ICIMP 2023 Presentation

Numerical Results – Cont.

- β = Move to the next state
- γ = Stay at the current state
- ϵ = Recover to previous state

 $p[n] = \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99\}$

City University of Hong Kong

Numerical Results – Cont.

 β = Move to the next state γ = Stay at the current state ϵ = Recover to previous state

 $p[n] = \{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99\}$

Summary

	Without	With	Difference
	proposed method	proposed method	
Average π_0 (Healthy state)	0.4852	0.8911	+83.66%
Average π_1 (Partially compromised state)	0.2989	0.0625	-79.09%
Average π_2 (Fully compromised state)	0.2158	0.0463	-78.53%

)
improvement	

Blockchain-based authentication scheme can greatly improve the IoT security level

