

ece

Light Field: A Quest for the Perfect Picture

Dr. Panos Nasiopoulos

March 2023

Hypervsn – holographic solutions

https://www.youtube.com/watch?v=4a0_Vb0elek

Capture and display what the human eye can see

Glasses

Capture and display what the human eye can see

Multiview displays

Image source: DIMENCO

Image source: Alioscopy

FOCUS & CONVERGENCE

Capture and display what the human eye can see

4K: improved resolution HDR: High Dynamic Range

HDR

A quest for the perfect picture

CAPTURE INFORMATION THAT CAN HELPS US APPROXIMATE HUMAN PERCEPTION

We live in a Visual World

9

We live in a Visual World

We live in a Visual World

FIRST PHOTO TAKEN BY A CAMERA - 1826

FIRST COLOUR PHOTOGRAPH - 1861

FIRST DIGITAL PHOTOGRAPH - 1957

176 x 176

HOLODECK – 20??

WE SEE THE WORLD BECAUSE OF LIGHT

WE SEE THE WORLD BECAUSE OF LIGHT

WE SEE THE WORLD BECAUSE OF LIGHT

WE FOCUS ON CONVERGING RAYS

WE FOCUS ON CONVERGING RAYS

WE FOCUS ON CONVERGING RAYS

HOW TO RECREATE THE SCENE USING LIGHT FIELD?

A picture is worth a 1000 words but ...

UBC

IARIA

Digital Multimedia

A picture is worth a 1000 words but ...

© Adelson, E.H., Bergen, J.R. (1991).

Light Field Technology

2006, Ren Ng

Current Light Field Capture Systems

Microlens

Raytrix

Light Field Camera – Concept of Sub-Aperture Images

5 5 Image Micro Main 5 5 5 5 Sensor Lenses Lens 0 4 4 5 Image sensor array 4 4 1 4 4 4 3 3 2 3 s_1 3 3 ϑ_2 3 3 2 3 s_1 2 2 1 2 4 s_0 2 0 5 1 | 1 1 1 F_U 0 0 0 0 0 0 The same color means they come from the same perspective.

Simplified model (Constant)

EECE 541

42

Light Field Camera – Perspective Feature

15X15 different perspectives

Freely changing perspectives

Light Field Camera – Perspective Feature

EECE 541 46

Light Field Frame

47

Sub-Aperture Images

Refocusing: Shift & Sum

Identify the depth layer in all the views

...

...

. . .

. . .

51

Refocusing: Shift & Sum

SShifaltable viewstooncatechetherebeefe wiewd view

Base view

Focused on the "Tire"

IARIA

Focused on the "Small Flower"

Focused on the "Flowers"

IARIA

Focused on the "Leafs"

IARIA

Focused on the "other tire"

Microlens depth limitation

Current Light Field Capture Systems

Camera Array

© Stanford

Raytrix

Microlens

REFOCUSING – DOES NOT WORK FOR CAMERA ARRAY CONTENT

61

REFOCUSING – DOES NOT WORK FOR CAMERA ARRAY CONTENT

Original

Refocused

REFOCUSING – DOES NOT WORK FOR CAMERA ARRAY CONTENT

Due to the longer baseline Shifting only aligns to the sharpest part

Occluded objects/ new details creates ghosting

REFOCUSING & PERSPECTIVE VIEWING IN ENTERTAINMENT

Applications:

- Live sports
- Interactive Movies
- Games

Pros:

- Every Sub-aperture image is captured from slightly different vantage point
- Better depth estimation than 3D
- Many focus points
- Better Object separation/recognition

ENTERTAINMENT – LIGHT FIELD

Changing the AR/VR Landscape

- Accurate Object Recognition
- Accurate Depth Estimation
- Accurate Overlay

Magic Leap has raised more than \$2.7 billion in funding in 2 years (AT&T is one of the investors)

 Existing AR: Challenging precise overlay of synthetic augmentations on real-life content

Segmentation, object identification, depth estimation have been extremely difficult challenges for real-time applications

Combine eye trackers with light field AR

Eye trackers can check where the viewer looks (heat map)

Light field properties are used to identify object of interest and focus only on that plane and location

Visual information from light field camera is analyzed to identify area

LIGHT FIELD IN AUTONOMOUS DRIVING Understanding Environment and Actions is the basis for success

Cameras

 Detect traffic lights, read road signs, keep track of the position of other vehicles, look for pedestrians and obstacles.

Lidar

 Bounces pulses of light off the surroundings.
They are analyses to identify lane markings and the edges of roads

Radar sensors

 Monitor position of other vehicles nearby. Already used in adaptive cruise control systems.

LIGHT FIELD IN AUTONOMOUS DRIVING Understanding Environment and Actions is the basis for success

For now, autonomous vehicles/driving are limited to some places, isolated streets, specific controlled environment (depth information may suffice)

Why? Limited Visual Information

LIGHT FIELD IN AUTONOMOUS DRIVING

But the long term goal, which is 5 years and beyond, will expand these to a much broader application which will need our visual solutions to step up...

LIGHT FIELD IN AUTONOMOUS DRIVING

But the long term goal, which is 5 years and beyond, will expand these to a much broader application which will need our visual solutions to step up...

Capture

- light intensity and directional information,
- focus and depth properties, and
- visual cues.

LIGHT FIELD IN AUTONOMOUS DRIVING

The rich, immersive video information provided by Light Field will help Al "act" as close as possible to a human

Capture

- light intensity and directional information,
- focus and depth properties, and
- visual cues.

LIGHT FIELD IN DIGITAL HEALTH Accurate Less Intrusive Endoscopy

A regular surgical camera

77

Accurate Less Intrusive Endoscopy

Light Field Display

<image>

5G enables real-time remote surgery

© TransEnterix

Non-Intrusive Monitoring

Labelling

Training -LRCN

Long Term Recurrent Convolutional Network

- Use a CNN to extract key features from frames
- Feed into LSTM to gain temporal information

Non-Intrusive Monitoring

Light Field information will improve this accuracy, since richer visual information will be processed by the system.

This type of visual information will allow us to accurately track behaviour and determine changes that may be associated with various medical conditions, for early diagnosis and prevention.

DIGITAL HEALTH & COMMUNICATIONS- Challenges

- Bandwidth
- Real-time streaming
- Security

UNIVERSITY OF BRITISH COLUMBIA

Compression

EECE 541 88

IARIA

Compression IBP frames

Trade=öff!beftween overhead=and=residuals

IARIA

LIGHT FIELD – MASSIVE DATA: COMPRESSION

Conventional Video

Light Field Video

90

IARIA

LIGHT FIELD – Existing Compression Methods

LIGHT FIELD – Existing Compression Methods

LF-MVC (Wang Et al. 2016)

Is Top Left the Best Place to get started?

Khoury's Method (Khoury Et al. 2018)

Encode the central frame as I frame ✓ Again only vertical or horizontal references × 38.18% BD-Rate of LF-MVC (5 x 5 Views) ✓

Does not scale well ×

LIGHT FIELD – Existing Compression Methods

Full Scheme (Avramelos et al. 2019)

Maximizes B frames so compression efficient ✓

Again I frame at a corner ×

Diagonal references ×

Predicting frames from far \times

Performs 24% better than LF-MVC and 15% worse than Khoury's method

Does not scale well ×

SSIM heatmap for Chess Pieces (5x5)

	CHESS - VIEW 1				
0-		2 [0.998]	6 [0.994]	12 [0.989]	17 [0.984]
1 -	1	4	8	15	20
	[0.998]	[0.996]	[0.992]	[0.987]	[0.982]
2 -	3	7	11	16	21
	[0.997]	[0.994]	[0.99]	[0.985]	[0.98]
3 -	5	9	14	19	23
	[0.994]	[0.991]	[0.987]	[0.983]	[0.978]
4 -	10	13	18	22	24
	[0.991]	[0.988]	[0.984]	[0.98]	[0.975]
35	ò	i	2	3	4

8		CHESS - VIEW 2			
0 -	3	0	2	9	17
	[0.997]	[1.0]	[0.998]	[0.994]	[0.989]
1 -	5	1	6	12	20
	[0.996]	[0.998]	[0.995]	[0.992]	[0.987]
2 -	7	4	10	16	21
	[0.995]	[0.996]	[0.993]	[0.989]	[0.984]
3 -	11	8	13	19	23
	[0.993]	[0.994]	[0.991]	[0.987]	[0.982]
4 -	15	14	18	22	24
	[0.99]	[0.99]	[0.987]	[0.984]	[0.979]
20	Ó	i	2	3	4

95

CHESS - VIEW 1	CHESS - VIEW 2	CHESS - VIEW 3	CUTCC AND A	CUTOE LADAR
0 2 6 12 17 [0.998] [0.994] [0.939] [0.934]	0 ⁻ (0.997) 0 2 9 17 (0.997) 10 (0.998) (0.994) (0.599)	0. (0.335) (0.336) [1.0] (0.338] (0.335)	0- 18 11 3 0 2 [0.996] [0.991] [0.996] [1.0] [0.997]	0- 21 16 8 2 0 (0.98] [0.985] [0.99] [0.996] [10]
1 (0.996) (0.996) (0.992) (0.967) (0.962)	1 (0.996) (0.998) (0.995) (0.992) (0.967)	1. (0.991) (0.995) (0.990) (0.995) (0.991)	1- [0.906] [0.991] [0.995] [0.995] [0.995]	1- 20 15 (0.98) (0.985) (0.985) (0.999)
2 3 7 11 16 21 (0.997) (0.994) (0.99) (0.905) (0.90	2 - 7 4 10 16 21 (0.995) (0.996) [0.993] [0.993] [0.909]	2 (0.991) (0.994) (0.996) (0.993) (0.988)	2-21 13 7 4 10 [0.966] [0.99] [0.994] [0.996] [0.992]	2- 22 17 10 5 3 (0.98) (0.585) (0.99) (0.994) (0.995)
3- [0.994] 9 14 19 23 [0.991] [0.907] [0.903] [0.978]	3- 11 8 13 19 23 (0.993) [0.994] [0.991] [0.907] [0.907]	3- (0.989) [0.992] [0.994) [0.99] [0.986]	3 17 9 8 16.993 (0.904) (0.909) (0.992) (0.993) (0.909)	3. 23 18 13 7 6 [0.979] [0.984] [0.988] [0.992] [0.992]
4 10 13 18 22 24 (0.991) (0.988) (0.984) (0.98) (0.975)	4 15 14 18 22 24 (0.99) (0.99) (0.987) (0.984) (0.979)	4- 21 18 17 22 24 (0.907) [0.99] [0.99] [0.907] [0.907]	4 - 24 19 14 15 22 4 - (0.903) (0.906) (0.99) (0.909) (0.906)	4- 24 19 14 11 12 (0.978) [0.962] [0.966] [0.969] [0.968]
CHESS - VIEW 6	CHESS - VIEW 7	CHESS - VIEW 8	CHESS - VIEW 9	CHEES , VIEW 10
4 10 14 18		20 9 2 4 32	23 19 10 7 4	24 19 14 7 2
• (0.998) (0.997) (0.993) (0.909) (0.964)	(0.995) (0.996) (0.997) (0.994) (0.999)	0 [0.99] [0.994] [0.998] [0.997] [0.993]	0. [0.984] [0.988] [0.993] [0.998] [0.996]	0 [•] [0.978] [0.962] [0.967] [0.993] [0.997]
3 (1.0) (0.997) (0.994) (0.969) (0.964)	¹ (0.996) (1.0) (0.998) (0.994) (0.908)	1 (0.931) (0.906) (1.01 (0.908) (0.903)	1 (0.500) (0.501) (0.500) (1.0) (0.507)	1- (0.979) [0.384] [0.99] [0.996] [1.0]
2- [0.998] [0.995] [0.992] [0.987] [0.982]	2. (0.992) (0.498) (0.996) (0.992) (0.586)	2* (0.991) (0.995) (0.998) (0.995) (0.991)	2* (0.595) (0.59) (0.595) (0.595) (0.595)	2* (0979) [0.984] [0.99] [0.995] [0.998]
3 (0.996) (0.994) (0.989) (0.964) (0.979)	3. (0.994) (0.996) (0.993) (0.909) (0.983)	3- 19 10 6 14 23 (0.99) [0.94] [0.946] [0.992] [0.988]	3 (0.905) (0.99) (0.993) (0.995) (0.992)	3 (0.979) [0.984] [0.989] [0.993] [0.995]
4 (0.994) [0.991] [0.987] [0.987] [0.992] [0.977]	4 15 11 17 22 24 (0.992) (0.994) (0.993) (0.906) (0.901)	4 (0.989) (0.992) (0.993) (0.99) (0.985)	4 0.504) [0.988] [0.992] [0.993] [0.989]	4 - <mark>23 18 13 9 8</mark> (0.978) (0.963) (0.968) (0.992) (0.992)
0 1 2 3 4	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4
CHESS - VIEW 11	CHESS - VIEW 12	CHESS - VIEW 13	CHESS - VIEW 14	CHESS - VIEW 15
0 - [0.994] [0.993] [0.99] [0.907] [0.903]	0 ⁻¹⁷ 11 15 18 22 (0.991) [0.993] [0.992] [0.99] [0.906]	0 ⁻ [0.305] [0.909] [0.993] [0.992] [0.909]	0- 24 22 17 10 12 (0.979) [0.963] [0.984] [0.993] [0.992]	0- 24 22 17 12 7 (0.973) [0.977] [0.902] [0.908] [0.992]
3 (0.998) (0.996) (0.993) (0.969) (0.964)	1 0.994] 0.998] 0.998] 0.996[0.993] 0.999]	1 - 22 10 2 4 12 (0.909) (0.993) [0.997] (0.996] [0.993]	1 23 16 11 2 4 (0.902) (0.967) (0.993) (0.997) (0.996)	1. [0.976] [0.961] [0.966] [0.992] [0.997]
2 0 J 9 16 21 (1.0) (0.997) (0.993) (0.908) (0.983)	2 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	2 [•] (0.991) (0.996) (0.997) (0.993)	2 20 14 3 0 3 (0.985) (0.99) 10.996 10 (0.997)	2 21 16 9 10.999 10.996 11.01
3 (0.996) (0.996) (0.991) (0.906) (0.901)	3 (0.995) (0.990) [0.996] [0.991] (0.986)	3· [0.99] [0.995] [0.998] [0.998] [0.995] [0.99]	3 19 15 10.9951 10.9951 10.9951 10.9951 10.9951	3 19 14 10 5 1 (0.979) (0.384) (0.989) (0.995) (0.998)
4- (0.996) (0.993) (0.969) (0.964) (0.978)	4 10 6 14 20 24 [0.994] [0.996] [0.993] [0.963] [0.963]	4- [0.99] 9 6 15 23 [0.994] [0.996] [0.992] [0.907]	4 - 21 16 9 6 13 [0.995] [0.999] [0.993] [0.995] [0.991]	4- (0.979) [0.964] [0.989] [0.993] [0.995]
0 1 2 3 4	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4	0 1 2 3 4
11 13 16 20 24	CHESS - VIEW 17	CHESS - VIEW 18	CHESS - VIEW 19	CHESS - VIEW 20
0° (0.99) (0.909) (0.907) (0.904) (0.90)	0 21 16 18 20 24 [0.986] [0.989] [0.988] [0.986] [0.983]	0 24 23 18 20 21 [0.901] [0.904] [0.908] [0.907] [0.906]	0 ⁻ 24 22 19 14 15 [0.975] [0.978] [0.983] [0.987] [0.987]	0- 24 22 19 14 10 [0.969] [0.973] [0.977] [0.962] [0.964
3 (0.993) (0.992) (0.989) (0.986) (0.962)	1 15 9 12 14 22 (0.989) (0.993) (0.992) (0.989) (0.986)	1 22 17 9 12 16 (0.904) (0.909) (0.993) (0.992) (0.909)	1 (0.978) 20 13 8 10 (0.992) (0.992) (0.992)	1. <mark>23 20 15 9 5</mark> (0.972) (0.976) (0.991) (0.997) (0.997
² (0.598) (0.996) (0.993) (0.988) (0.584)	2 (0.993) (0.997) (0.996) (0.993) (0.988)	2 19 8 10.993 10.9971 (0.996) 10.9921	2- 21 16 9 3 5 [0.997] [0.997] [0.997] [0.996]	2 21 16 11 6 2 (0.975) (0.98) (0.985) (0.991) (0.991
3- (1.0) (0.997) (0.993) (0.986) (0.962)	3 5 0 996] 9 13 0 10 997] 10 997] 10 997]	3 (0.99) (0.996) (0.000 (0.997) (0.992)	3 18 11 (0.994) (0.99) (0.996) (0.097)	3, <mark>18</mark> 13 (0.969) (0.995) [1.0]
4 (0.598) (0.596) (0.991) (0.986) (0.98)	4- (0.995) (0.996) (0.996) (0.991) (0.905)	4- 14 7 1 6 15 (0.99) (0.995) (0.9980) (0.9951 (0.99)	4- 17, 12, 7, 1, 16, 19, 10, 19, 10, 19, 10, 19, 10, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	4- 17 12 8 4 1 (0.979) (0.903) (0.989) (0.994) [0.994
			CHESS - VIEW 24	0 1 2 3 4
CHESS - VIEW 21	CRESS - VIEW 22	CHESS - VIEW 23	24 22 19 17 16	CHESS - VIEW 25
0 [0.985] [0.984] [0.982] [0.98] [0.976]	0 [0.961] [0.963] [0.963] [0.962] [0.979]	0 (0.975) (0.979) (0.982) (0.982) (0.981)	0 [0.97] [0.973] [0.977] [0.961] [0.961	¹ 0 ⁻ 24 22 19 15 11 [0.964] [0.960] [0.972] [0.976] [0.90
1 [0.989] [0.988] [0.986] [0.995] [0.979]	1 18 12 14 16 21 [0.985] [0.988] [0.987] [0.985] [0.982]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 (0.973) (0.977) (0.962) (0.966) (0.966	1 2-23 20 16 10 7 [0.367] [0.371] [0.375] [0.361] [0.36
2- [0.993] [0.991] [0.989] [0.986] [0.982]	2 11 9 10 17 (0.989) (0.993) (0.992) (0.989) (0.985)	2 18 12 0 9921 (0.988) 10.9921 (0.992) 11 (0.988)	2- [0.977] [0.982] [0.987] [0.993] [0.991	2 21 17 12 6 3 2 (0.971) (0.975) (0.98) (0.986) (0.99
3 (0.998) (0.996) (0.993) (0.908) (0.983)	3 (0.993) (0.997) (0.996) (0.993) (0.988)	3 14 1 5 1 (0.993) 0.9937 (0.996) 10.9921	3 18 12 6 6 10 9921 10 9921 10 995	² 3- 18 13 8 10.9921 10.99
4 0 3 5 12 21 [0.993] [0.993] [0.993] [0.997] [0.982]	4 (0.996) (1.0) (0.997) (0.993) (0.907)	4 [0.39] 3 0 2 8 [0.39] [0.396] [1.0] [0.997] [0.592]	4 13 8 3 0 1 (0.994) (0.99) (0.996) 10 (0.997	1 4- 14 9 5 2 00 (0.977) (0.983) [0.989] [0.995] 10.0

Avg of all views

Empirical results over 9 test sequences

SSIM based Compression Method

Universal Pseudo-sequence (UPS) SSIM based Compression Method

Unlike most of the PSB prediction structures and coding orders discussed above, the proposed Universal Pseudo-sequence (UPS) based structure takes full advantage of both horizontal and vertical correlation among the views

SSIM based Compression Method

Has highest similarity with its neighbors

SSIM of all the views

Highest one is I-frame

SSIM calculation makes smallest possible P frames

To maintain our structure, next level of P frames are predicted

5x5 views

B frames with vertical and horizontal references

SSIM based Compression Method

Can be extended to any number of views

Feasible for most camera array structures

Performance – Microlens content (5x5)

Performance – Animated content (3x3)

• B

B B

103

D

B ·В

Performance – Camera Array content (3x5) and (4x4)

Light Field Video Compression for Random-access efficiency

Light Field – Random Access matters

Khoury's Method

Worst Frame to Decode: 6

LF-MVC

Worst Frame to Decode: 11

Full Scheme

Worst Frame to Decode: 18

Proposed Methods

Reduced worst case random-access from 6 to 4

Diagonal Reference Based Prediction structure

Highest SSIM

Increases compression efficiency by 15%

Average random-access increases from **2.56 to 2.72**

SSIM Assisted Diagonal Reference Based Prediction structure

Random Access performance

	Method	Random-access Complexity		
		Average	Worst-case	
	LF-MVC	4.92	11	
	Khoury's	3.2	6	
	Full scheme	6.08	17	
_	Diagonal reference	2.56	4	
\square	SSIM assisted RAE	2.72	6	
	UPS	3.84	8	
'				

Best Random-access

Best Random-access to compression trade-off

N. Malajaho, S. R. Leo, H. Walfe, J. Neur, and N. T. Fournard, "An Efficient Random Averas Light Field Mileo Compression: Milako, Dimpond Marffred Predicting In 2019 IEEE International Contenence on Many Francessing (1917), 2019; M. Mehrgalfe, M. Branzard, and S. Mender, 1931/Marsfred Frederic Bredellan Sinchure for Myht Field Mileo Compression: In 1998 International Contenence on Consumer (2019) UNIVERSITY OF BRITISH COLUMBIA

Refocusing

Performance – Animated content

The dense camera array consists of 25 camera modules fixed on a stainless steel stand

Our Light Field Camera array – Outdoors content

□ The video content is captured on the University campus, with the scene including walking people, bicycles, vehicles and buildings as background.

Sketch of the captured scene

Snapshot of the captured scene

Our Light Field Camera – Outdoors content

The frames from each camera are not perfectly aligned.

alignment

Our Light Field Camera array – Outdoors content

Color differences exist in the frames captured by different camera.

Camera1

Camera2

EECE 541 113

Our Light Field Camera array – Outdoors content

Different types of geometry distortion for single camera and the camera array.

Tangential distortion
Problems - Geometry Distortion (2)

Different types of geometry distortion for single camera and the camera array.

This type of distortion is described by **extrinsic** parameters.

Rotation and translation between each two camera pairs.

Our Light Field Camera array – Outdoors content

Different types of geometry distortion for single camera and the camera array.

Images captured by 5 cameras in the SAME row. Lens distortion is already fixed.

Rotation and translation between cameras

This type of distortion is described by **extrinsic** parameters.

Performance – Visualization

Visual comparison before and after calibration and correction

- (c) Uncorrected, view 24
- (d) Uncorrected, view 25

(g) Corrected, view 24

117

(h) Corrected, view 25

Performance – Quantitative Comparison

Quantitative comparison before and after calibration/correction

The bitrate vs. PSNR at four different QP levels (25, 28, 30, and 33)

On average, for the same bitrate the objective visual quality (PSNR) increases by **0.519dB**, while for the same quality the bitrate savings are **30.275%**.

118

UNIVERSITY OF BRITISH COLUMBIA

Light Field View Synthesis

Plenoptic Camera - challenges

- + High Angular Resolution
- Low Spatial Resolution

Huge amount of data to transmit

Transmission End

Receiver End

Network for View Synthesis

LF Data Representation

3) Epipolar Image Plane (EPI)

Improving Up-sampled Quality

Improving Up-sampled Quality

Low-resolution Up-sampled Sup-aperture Images

EPI representation of up-sampled LR images showing discontinuity in disparity EPI representation of HR images showing continuity in disparity High-resolution Up-sampled Sup-aperture Images

Results

Ground Truth

Ground Truth Close-up

LFCNN (x4) [8]

GMM (s4) [11]

GB (14) [12]

D-LFSSR (14) [16]

Proposed (x4)

126

LFSSR

ResLF

Ground Truth

LF-ATO

Distg-Block

Proposed

Subjective Results

Side by side evaluation based on Recommendation BT.500-13 DSIS Number of subjects: 18 Number of sequences: 10 Subjects asked which method they prefer

GB Same Proposed

UNIVERSITY OF BRITISH COLUMBIA

Industry & Market

Magic Leap

- Dual plane per eye
- LCOS SLM
- Waveguide optics

Multi-Planar

magic

leap

Understanding Immersive Displays

Escape the Screen

We're creating a world where content escapes the screen and merges with reality.

Light Field Extended Reality (XR) eyewear which will provide medical professionals lifelike augmented imagery

IARIA

CONCLUSION

VISUAL ACQUISITION WILL HAVE MOST DISRUPTIVE IMPACT ON MANY TRENDS & MARKETS

Thank you! Contact:

panos@ece.ubc.ca http://dml.ece.ubc.ca

