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Background – Marine Fisheries in Norway

• 2nd contributor to 
the Norwegian 
Economy after the 
petroleum 
industry
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Source: https://www.fiskeridir.no/English/Fisheries/Statistics; www.fao.org

• 2nd world’s largest 
explorer of fish & 
fish products in 
terms of value 
(due to salmon)

https://www.fiskeridir.no/English/Fisheries/Statistics


Catches of Marine Fish Species in Norway
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Source: https://www.seaaroundus.org/data/#/eez/578?chart=catch-chart&dimension=taxon&measure=tonnage&limit=10



Real 2010 Value of marine fisheries in  Norway

What happened with herring and Capelin?

• Overexploitation

• Climate change

• Technological advancement 

https://www.seaaroundus.org/data/#/eez/578?chart=catch-chart&dimension=taxon&measure=value&limit=10



Norwegian Fisheries

Based on fish species characteristics:

❖ Pelagic species: herring, mackerel, capelin, brisling (sprat), sandeel, Norway pout,
blue whiting, etc.

❖ Demersal species: cod, saithe, haddock, pollack, ling, tusk, halibut

Based on fishing locations (12 miles):

❖ Coastal fisheries vs. Ocean fisheries:

Based on gears:

➢ Conventional gears: nets, hook-lines, seiners, pots,
traps, etc.

➢ Industrial gears: trawlers, pursers, gillnets



Background

• Fishery has been an important contributor to the Norwegian 
Economy after the petroleum industry

• Fish catches are affected by a multitude of factors 
• fishing effort, location, types of fishing, vessels, socio-economic conditions, 

environmental variables etc

• Machine Learning (ML) can help fishers optimize their fishing efforts 
by analyzing historical catch data along with environmental factors 
such as ocean temperature
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Literatures on Applying ML on Fisheris

• Limited…unfortunately

• Some notable attempts:
➢ Predict the location of tuna fishing in the South Pacific (Zhang et al. 2022)
➢ Predict marine capture fisheries and aquaculture production in Malaysia based on 

past production data and climate variable (Rahman et al. 2021)
➢ Predict fish catches using past catches + meteorological information (Kokaki et al. 

2018) 
➢ Assess the species richness (Leathwick, et al. 2021) 
➢ Analyze marine spatial planning for resolving conflicts of fisheries and other activities 

(Coccoli et al., 2018)
➢ Estimate fishing effort allocation (Behivoke et al. 2021) 
➢ Evaluate fishing gear selectivity (Joshy et al., 2018)
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Proposed method

• Problem Definition
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Given data D:

M is the number of samples in data D

xi is the n-dimensional vector, representing the relative attributes per haul per catch

start position width, start position length, sea depth start (meters), duration -

(minutes), stop position width, stop position length, sea depth stop (meters), draw 
distance (meters), species, round weight, etc.



Proposed method

• Objective:
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Linear Regression RANSAC Light GBM



Experimental results

Dataset description

Data visualization

Performance and 
evaluation

• The historical fishing data were extracted 
from the Vessel Monitoring System (VMS) 
from the Norwegian Fisheries Directorate, 
2000-2022

• The dataset compromises haul time, draw 
distance, fishing location, catch weight, 
vessel characteristics, environmental 
variables, distance related variables etc

• The environmental variables included two 
oceanographic variables: Sea Surface 
Temperature (SST) and sea surface Chlorophyll

• three bathymetric and/or topographic 
variables: depth, slope and terrain 
ruggedness (rugosity)



Data visualization



Predictions of Fish catches

Linear Regression

RANSAC

LightGBM algorithm



Comparing Predicted Fish Catch Performance

Linear Regression RANSAC



Conclusion and future work

• We conducted preliminary analyses to showcase the effectiveness 
of linear regression, RANSAC, and LightGBM in fish catch predictions

• Model performance w.r.t large amount of noise

• Transformation of haul-level data into time series formats, targeting 
more vessel-focused or trajectory-driven model

• Other influencing factors, such as social-economic, policy related 
factors 

• Expansion to other species and fisheries
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