
15 Nov 2023, Valencia, Spain, Hans-Werner Sehring

Model-supported Software Creation:
Towards Holistic Model-driven
Software Engineering

The 2023 IARIA Annual Congress on Frontiers in

Science, Technology, Services, and Applications

2

Agenda

0 1 0 2

0 3 0 4

0 5 0 6

Model- dr iven
Soft ware Engineer ing
(MDSE)

Model- Suppor t ed
Soft ware Crea t ion
(MSSC)

An MSSC Approach
wit h t he M³L

MDSE in P ract ice

The Minimalis t ic
Met a Modeling
Language (M³L)

Summary and
Out look

15.11.2023

1. Model-driven Software Engineering

Various approaches to model-driven software

engineering exist, for example,

• Model-driven Architecture (MDA)

• Early MDSE approach

• Models are created on (originally) three levels of

abstraction

• A Computation-Independent Model (CIM) from

the perspective of the subject domain.

• A Platform-Independent Model (PIM) as a first

formal model.

• Transformed into a Platform-Specific Model

(PSM) used to generate a working

implementation.

• Software Generation

• Model contained in code

• Different approaches, e.g., metaprogramming,

templates, generative AI

• Domain-specific Languages (DSLs)

• Languages ≙ Metamodels

• Defined for a specific domain

• Generic Software

• A domain model was used during the

development of the software

• If the model is parameterized, then software is

configurable (low code / no code development)

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

3

Approaches based on formal models and model transformations

Software engineering reality (at least in some domains):

Depending on the kind of software and the kind of project, we find

• Heterogeneous modeling artifacts: varying degrees of formalism, ambiguity, detail, etc.

• Artifacts often part of a methodology or a tool: notation and representations matter

• Several project stages, not only software (engineering) related; from inception to operations stages

2. MDSE in Practice

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

4

Sample Development Artifacts and Formalizability

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

5

Phase Order Discipline Artifact Formal(izable) model
Inception
/ Research

Management Goals —

↪ Management Inception —

↪ Concept Requirements (inside-out) X

Concept Research (outside-in) —

Analysis ↪ Concept Personas —

↪ Concept Customer journeys —

↪ Technology Existing tools X

Technology Information demand / data flows X

Design Concept Information architectures (stationary web, mobile web, mobile app) —

Graphics Wireframes (stationary web, mobile web, mobile app) —

↪ Technology Solution architecture —

Graphics UI design / style guide (X)

Implementation ↪ Technology SW arch (if not agile) X

Technology System arch (if not agile) X

↪ Technology Code design X

Technology Code X

Concept Test cases X

Technology Test scripts X

Concept Documentation (X)

Operations ↪ Technology Infrastructure X

Technology Build and deploy scripts X

Concept Training —

Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

6

Support for Informal Processes and Artifacts

Given that the various process steps and artifacts

that are

• not formal

• ambiguous

• not producible by model transformations

• etc.

we cannot have MDSE.

Still, we want …

• Support in managing (modeling) artifacts

• Checks on models

• Deriving software from specifications

• Traceability

• Etc.

We want the benefits of MDSE.

15.11.2023

Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

7

3. Holistic Model-Supported Software Creation

Holistic MDSE that covers all

project stages

For example: project success is

measured based on business

goals, not requirements

Model-supported SE

acknowledges the fact that we

cannot purely rely on formal

models and model transformations

In the absence of formal models,

these cannot be the overarching

communication base

Model-supported Software

Creation acknowledges the

creative work that is part of the

process

There is creative work on artifacts

that cannot adequately be

formalized by model

transformations

15.11.2023

For those software projects with imprecise, creative development steps, we need …

Need to model activities and

artifacts outside SW

production

Models can describe the (final)

informal artifacts

But: model transformations to

describe development steps

Modeling Stages and Artifacts

Creation stage Sample model entities on the stage

(Business) Goals KPIs

OKRs

Subject domain
model

Information architecture

Interaction design

Wireframes

Processes, data flows

Requirements,
Conceptualization

Solution hypothesis

Functional ~

Non-functional ~

Customer journeys

Touch points

Solution
architecture

Interfaces

High-level architecture

Functional mapping

Creation stage Sample model entities on the stage

Software
architecture(s)

Components

Communication between those components

Interfaces to the environment

Constraints of the resulting software system

Requirements met by the architecture

Rationale behind architecture decisions

Code Metaprograms

Input for software generators

Domain-specific language expressions

Systems
architecture

Infrastructure definition (IaC)

Automated deployments (CI/CD)

Operations Service level agreement

Monitoring

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

8

Examples of Description Models for Informal Artifacts

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

9

CIM

Personas

Persona A Persona B

Customer Journey 1

Touchpoint 1.1 Touchpoint 1.2

Brouchure

Magazine
Article

Press
Release

Online
Ad

World of
Mouth World of

Mouth

Direct
Email

Reviews

Main
Website

Event
EvaluationEvent

Site

Online
Registration Social

Networks

Blog Post

(if we use MDA terminology here)

The general theme of model transformations we consider

• Models on one layer are refined until the result of the corresponding phase

• Models on a subsequent layer are created from models of previous stages

Model Refinement and Transformations

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

10

Model on layer n

Model on layer n+1

Model creation
Selection
Prioritization

Model refinement
Delta models

Typical phases of a software creation process and model transformations connecting them.

Model Refinement and Transformations

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

11

Creation stage Sample model entities on the stage

(Business) Goals KPIs

OKRs

Subject domain
model

Information architecture

Interaction design

Wireframes

Processes, data flows

Requirements,
Conceptualization

Solution hypothesis

Functional ~

Non-functional ~

Customer journeys

Touch points

Solution
architecture

Interfaces

High-level architecture

Functional mapping

Software
architecture(s)

Components

Communication between those components

Interfaces to the environment

Constraints of the resulting software system

Requirements met by the architecture

Rationale behind architecture decisions

Code Metaprograms

Input for software generators

Domain-specific language expressions

Systems
architecture

Infrastructure definition (IaC)

Automated deployments (CI/CD)

Operations Service level agreement

Monitoring

from

Business Goals

to

Domain Model

and

Requirements

from

Requirements

and

Domain Model

to

Solution Architecture

from

Solution Architecture

to

Software Architecture

from

Software Architecture

to

Code

from

Requirements

and

Solution Architecture

and

Software Architecture

to

Systems Architecture

from

Systems Architecture

to

Operations

Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

12

4. A Brief Introduction to the M³L

A

A is a B
A is the B

A is a B { C }

A |= D

A |- E F G.

The declaration of or reference to a concept named A

The refinement of a concept B to a concept A;

A is a specialization of B, B is a generalization of A (the: A is the only specialization of B)

Containment of concepts;

C belongs to the content of A, A is the context of C

The semantic rule of a concept of a concept A;

whenever A is referenced, D is bound;

if D does not exist, it is created in the same context as A

The syntactic rule of a concept A;

A is printed out as or recognized from the concatenation of the syntactic forms of

concepts E, F, and G;

if not defined, a concept evaluates to / is recognized from its name

15.11.2023

Basic language constructs. More complete descriptions can be found in the literature.

Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

13

M³L Expression Evaluation

Person {
Name is a String }

PersonMary is a Person {
Mary is the Name }

PersonPeter is a Person {
Peter is the Name
42 is the Age }

Person {
Peter is the Name
42 is the Age }

⇒ PersonPeter

Person {
Mary is the Name
42 is the Age }

⇒ Person {
Mary is the Name
42 is the Age }

The M³L has an operational semantics for expression evaluation

It is based on (any combinations of)

• Refinement

• Semantic rules

• Visibility rules

• All concepts in the content of a concept are also visible in the content of

refinements: A { B }, C is an A ⇒ C { B }

• All concepts in the content of a concept are also visible in the contents of

concepts in the context of that concept:

D E { F } ⇒ E { F { D } }

• Narrowing

If a concept A has a subconcept B, and if all concepts defined in the context of B
are equally defined in the context of A, then each occurrence of A is narrowed

down to B.

15.11.2023

M³L Example: Definition of a Programming Language

Definition of a conditional statement

Boolean
True is a Boolean
False is a Boolean

Statement
PrintStatement { Text is a String }

IfThenElse is a Statement {
Condition is a Boolean
IfStatement is a Statement
ElseStatement is a Statement

}
IfTrue is an IfThenElseStatement {

True is the Condition
} |= TrueStatement
IfFalse is an IfThenElseStatement {

False is the Condition
} |= ElseStatement

Application in a program

SomeCondition is a ComputeSomeBoolean { … }

Conditional1 is an IfThenElse {

SomeCondition is the Condition

PrintStatement is the IfStatement {

"It's true" is the Text

}

PrintStatement is the ElseStatement {

"It's false" is the Text

}

}

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

14

M³L concepts represent different modeling components

• Topmost concepts represent modeling stages and models

• They contain concepts that represent domain entities

• They relate models and model items to each other

These contained concepts

• May be stand-alone concepts as model items for domain entities or

• May represent artifacts that represent such domain entities

Model transformations trace the evolution of artifacts created during the course of software creation

Model transformations as considered here can be expressing by the M³L

5. An MSSC Approach with the M³L

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

16

Stage

Model

Model Item Artifact

Dimensions of Model Relationships: Combining Models

For example, in an e-commerce application

DomainModel there may be a definition based on

commerce base models

ProductDescriptions is a DomainModel {
ProductData
PaymentMethods from Commerce
PackagingInformation from Logistics

}

As an example from another layer, there may be an

abstract model of an information system defined as

OurInformationSystem
is a PlatformIndependentModel

{
AppServer from SWComponents
DBMS from SWComponents
DataSchema from DBModeling
WebServer from SWComponents
WebPage from WebDesign

}

In the M³L, concepts are defined in context. Base definitions can be “imported” from foreign contexts.

This way, models on one layer can be defined by selecting model components of a previous layer as a basis.

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

17

On one layer, models are refined.

In the M³L, model refinement happens along the different axes of M³L models

• by introducing a refined concept of an existing model concept:

OurInformationSystem → OurInformationSystemConcept

• by refining base concepts of a concept: WebServer is a ServletEngine

• by refining the content of a model concept: ProductDataSchema is the DataSchema

Example:

OurInformationSystemConcept is an OurInformationSystem {
RDBMS from SWComponents is the DBMS
ProductDataSchema is an RDBSchema from DBModeling, the DataSchema
WebServer is a ServletEngine from Java

}

Dimensions of Model Relationships: Refining Models

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

18

Semantic rules can be used to

• Evaluate concepts

• Assign (operational) semantics to concepts

• Create models in a subsequent stage

Example for the creation of a model on a subsequent stage:

From the software design model of the information system, OurInformationSystemConcept, we have a

more concrete model of the data layer, OurInformationSystemDataLayer, derived by

OurInformationSystemConcept |= OurInformationSystemDataLayer {
RDBMS
ProductDataSchema {
ProductsTable is a Table from DBModeling

}
}

Dimensions of Model Relationships: Creating Models

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

19

Taken over from source concept

Taken over from source concept
and content refined

On one modeling stage, concept refinements are used to elaborate models

ModelOnStage1 {
DomainConcept { Attribute }
MoreElaboratedDomainConcept is the DomainConcept {
Attribute is an AttributeClass }

EvenMoreElaboratedDomainConcept is the MoreElaboratedDomainConcept {
SpecificValue is the Attribute
AnotherAttribute is an AnotherAttributeClass }

}

By M³L’s contextual definitions and refinements

• All intermediate modeling steps are accessible (DomainConcept, MoreElaboratedDomainConcept)

• The cumulated model is available in the most specific context (EvenMoreElaboratedDomainConcept)

Model Transformation with the M³L 1

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

20

By equipping the more refined concepts of one stage with semantic rules, models in a subsequent stage are

initially created

ModelOnStage1 {
EvenMoreElaboratedDomainConcept |= ModelOnStage2 {
Stage2Concept { … }

}
} |= ModelOnStage2

Additionally, concepts can refer to concepts of a preceding modeling stage

ModelOnStage2 {
DomainConceptSpecification is the DomainConcept from ModelOnStage1 { … }

}

Model Transformation with the M³L 2

15.11.2023Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

21

Definition on newly
created model stage 2

In the case of source code generation, software is generated by the M³L using its syntactic rules

Example (assume that ProductsTable has content Columns):

OurInformationSystemDBImplementationSQLOutput is an SQL {
OurInformationSystemDBImplementation is an OurInformationSystemDataLayer {

ProductDataSchema {
ProductsTable |- "PRODUCTS(" Columns ")" .

} |- "CREATE TABLE " ProductsTable .
}

}

Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

22

15.11.2023

Software Generation from Models 1

With contextual definition of syntactic rules, different output formats can be defined on one model.

Example: generate an external format matching the database schema

OurInformationSystemDBImplementationJSONOutput is a JSONSchema {
OurInformationSystemDBImplementation is an OurInformationSystemDataLayer {

ProductDataSchema {
ProductsTable |- " \"title\": \"Product\","

" \"description\": \"product description\","
" \"type\": \"object\","
" \"properties\": {" Columns "}" .

} |- "{"
" \"$schema\": \"https://json-schema.org/draft/2020-12/schema\","
" \"$id\": \"https://example.com/product.schema.json\""
ProductsTable
"}" .

} }

Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

23

15.11.2023

Software Generation from Models 2

Summary

• Software projects consist of more activities than the software production itself – we need holistic processes

• There is a class of software projects that includes activities that lead to the creation of unstructured/informal

artifacts; there activities are more creative than they are engineering tasks

• For such projects, a model-driven approach that is based on formal models is not possible

• To benefit from the advantages of model-driven development, models shall support the process, though

Outlook

• The references to artifacts need to be elaborated; we can build on previous work at this point

• Investigate the utilization of generated models as checklists that describe the required artifacts

• Above the topic of this paper, the general modeling with the M³L in MDSE will be investigated further

For example, can it additionally be used as a reasoner or combined with one?

Model-supported Software Creation – Hans-Werner Sehring – NORDAKADEMIE

24

15.11.2023

6. Summary and Outlook

NORDAKADEMIE gAG Hochschule der Wirtschaft

Köllner Chaussee 11 · 25337 Elmshorn · Tel.: +49 (0) 4121 4090-0 · E-Mail: info@nordakademie.de · Web: www.nordakademie.de

	Model-supported Software Creation: Towards Holistic Model-driven Software Engineering
	Agenda
	1. Model-driven Software Engineering
	2. MDSE in Practice
	Sample Development Artifacts and Formalizability
	Support for Informal Processes and Artifacts
	3. Holistic Model-Supported Software Creation
	Modeling Stages and Artifacts
	Examples of Description Models for Informal Artifacts
	Model Refinement and Transformations
	Model Refinement and Transformations
	4. A Brief Introduction to the M³L
	M³L Expression Evaluation
	M³L Example: Definition of a Programming Language
	5. An MSSC Approach with the M³L
	Dimensions of Model Relationships: Combining Models
	Dimensions of Model Relationships: Refining Models
	Dimensions of Model Relationships: Creating Models�
	Model Transformation with the M³L 1
	Model Transformation with the M³L 2
	Software Generation from Models 1
	Software Generation from Models 2
	6. Summary and Outlook
	Foliennummer 25

