A Tool for Automating Sizing in Agile Development Using the COSMIC Method

By

Bruel Gérançon, Sylvie Trudel

Department of Computer Science

Université du Québec à Montréal (UQAM)Montréal, Canada

e-mail: gerancon.bruel@uqam.ca
Brue Gérancçon received a master degree in MIS from the University of Quebec at Montreal (UQAM); a PhD in cognitive computing at UQAM.

Research interest lies on the software development process, functional size measurement, automatic natural language processing (NLP), Artificial Intelligence, Software Quality Assurance
In our paper we aimed at:

Developing a tool for Automating Sizing in Agile Development Using the COSMIC Method

Contribution:

• We developed a new approach that facilitates measuring the functional size of agile development.

• We developed a tool, which semantically identifies and generates the triplet from items of product backlog written in natural language and automatically determines the functional size of agile development.
The measure of the functional size of agile development projects

- Plays an important role in software engineering.
- Allows project managers to establish reliable estimation and productivity models [11][18].
- In other words, it is a key factor that allows for estimating the effort, the cost of developing software products, and performing an analysis of the performance of the software development team.
Estimation in agile development projects

• In agile development, User Story Points (USP) are considered an estimated relative level of the effort required to complete a User Story (Murat and al; 2017; Raharjana and al; 2021)

• Estimation is important because it allows the project manager to identify which requirements to prioritize for each iteration and whether these requirements or User Stories could be completed during the iteration [7].

• Automating the measurement of the functional size of agile projects is a priority for managers and agile teams.

• Most agile development projects measure their requirements in user story points [2].
The limitations of User Story Points for measuring agile development projects are that it is not possible to standardize their value from one project to another or from one organization to another.

The value is subjective and specific to the development team that assigned it [2][6][7].

The User Story Point does not represent a measure of functional size but rather an effort estimate [1][3][8].
Problematic

• Agility is one of the industry's most widely used software development approaches.

• Agile development project is supposed to deliver the functionalities for the product owner as soon as possible.

• However, automating sizing in agile development remains difficult.
 • The software's functional size measurement methods are challenging to scale for agility.
 • In the industry, managers and scrum masters use empirical methods to estimate the size of user stories manually.

• Necessary to propose *A Tool for Automating Sizing in Agile Development Using the COSMIC Method*
Tool to automate agile project sizing

Product Backlog

Users Stories

Subjects

predicates (verbs)

Objects

Data movements

Entry (E)

eXit (X)

Read (R)

Write (W)

Functional Size

© Copyrights Bruel Gérançon & al., 2023
We developed a tool that automatically performs the functional size measurement on the User Stories of a product backlog.

Our tool integrates a set of Natural Language Processing (NLP) techniques, which semantically identifies the subjects, verbs, and objects from User Stories written in natural language.

In such a perspective, we presume that a software requirement written as a User Story refers to an actor (subject) that triggers an action or a system operation (verb or data movement) on an object.

We applied several rules in COSMIC for identifying the verbs that correspond to a type of data movement (Entry, Exit, Read, Write) and quantifying the number of verbs (data movement), which refers to the functional size [9].
Results of our research

Manual functional and Automatic sizing comparisons

<table>
<thead>
<tr>
<th>Project</th>
<th>Manual Functional Sizing</th>
<th>Automatic Functional Sizing</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case#1</td>
<td>109</td>
<td>95</td>
<td>93.14%</td>
</tr>
<tr>
<td>Case#2</td>
<td>83</td>
<td>84</td>
<td>98.80%</td>
</tr>
<tr>
<td>Total</td>
<td>192</td>
<td>178</td>
<td>95.97%</td>
</tr>
</tbody>
</table>

Manual and automatic functional sizing

© Copyrights Bruel Gérançon & al., 2023
Triplets list and other statistics

<table>
<thead>
<tr>
<th>Functional Process</th>
<th>Triplets</th>
<th>Entry</th>
<th>Exit</th>
<th>Read</th>
<th>Write</th>
<th>Sum CFP</th>
<th>Include</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a Professor</td>
<td>registrar, enters, detail</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Add a Professor</td>
<td>C-Reg, checks, detail</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Add a Professor</td>
<td>C-Reg, creates, professor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Add a Professor</td>
<td>registrar, displays, message</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Enquire on a Professor</td>
<td>registrar, enters, professor</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Enquire on a Professor</td>
<td>C-Reg, retrieves, professor</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Enquire on a Professor</td>
<td>C-Reg, displays, professor</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Enquire on a Professor</td>
<td>registrar, displays, error</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Modify a Professor</td>
<td>registrar, modifies, detail</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Modify a Professor</td>
<td>C-Reg, validates, detail</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Modify a Professor</td>
<td>registrar, displays, error</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Delete a professor</td>
<td>C-Reg, asks, course</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Delete a professor</td>
<td>catalog, replies, yes</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Delete a professor</td>
<td>C-Reg, deletes, professor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Delete a professor</td>
<td>registrar, displays, error</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Enquire on Course Offerings (Professor)</td>
<td>professor, enters, ID</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Enquire on Course Offerings (Professor)</td>
<td>C-Reg, retrieves, professor</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Enquire on Course Offerings (Professor)</td>
<td>C-Reg, sends, professor</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Enquire on Course Offerings (Professor)</td>
<td>C-Reg, sends, department</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
</tbody>
</table>
Automatically Measured Functional Size

<table>
<thead>
<tr>
<th>Monitor Student Schedule Enrolment progress</th>
<th>C-Reg, displays, schedule</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close Registration</td>
<td>registrar, selects, registration”</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Close Registration</td>
<td>C-Reg, receives, course</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Close Registration</td>
<td>C-Reg, checks, student</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Close Registration</td>
<td>C-Reg, sends, statuses</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Close Registration</td>
<td>C-Reg, sends, schedule</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Close Registration</td>
<td>C-Reg, retrieves, student</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Close Registration</td>
<td>C-Reg, sends, info</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>✓</td>
</tr>
<tr>
<td>Total Of Sum CFP</td>
<td></td>
<td>30</td>
<td>43</td>
<td>12</td>
<td>10</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>
Evaluation and Validation of Results

- We tested the tool with two (2) agile development projects for which the items in the product backlog are written in the form of User Stories.
- Results of the tool compared with those of human experts.
- The manually measured results of these projects: published and available on the COSMIC website.
- The research showed that our tool offers automated results consistent with the manual results, with an average accuracy of 95.97%.
Conclusion

• We proposed a new tool designed to automate the functional sizing of agile development projects from the items in a product backlog.

• Our tool can effectively identify the subjects, predicates or verbs, and objects derived from User Stories and quantifies the number of data movements, which refers to the functional size.

• The validation of our tool needs to cover the potential cases.

• In the future, extensive testing will be performed to improve the tool's efficiency.

• Integration of a machine learning module, which allows the tool to learn to identify the data movement for the User Stories that are not described according to the recommended standard format.
References

• T. Hacaloglu and O. Demirors, “Measurability of functional size in Agile software projects: Multiple case studies with COSMIC FSM” In 2019, 45th Euromicro conference on software engineering and advanced applications (SEAA), pp. 204-211. IEEE, 2019.

• J. Desharnais, L. Buglione, and B. Kocatürk, "Using the COSMIC method to estimate Agile user stories”, Proceedings of the 12th international conference on product focused software development and process improvement, pp. 68-73, 2011.