
Yet another talk on generative AI
Experiences of a non-expert

Luigi Lavazza
Università degli Studi dell’Insubria, Varese, Italy



Luigi Lavazza
Professional experience
• Professor of Computer Science at the University of Insubria at Varese, Italy.

• Scientific consultant in digital innovation projects at CEFRIEL – Politecnico di
Milano.

Scientific Activity

• Research: Empirical software engineering, software metrics and software
quality evaluation; project management and effort estimation; Software
process modeling, measurement and improvement; Open Source Software.

• Several international research projects

• Reviewer of EU funded projects.

• Co-author of over 180 scientific articles.

• PC member of several international Software Engineering conferences

• Editor in chief of the IARIA International Journal On Advances in Software
(2013-2018).

• IARIA fellow since 2011



Disclaimer

• I am not an AI expert

• Having heard a lot about Generative Artificial Intelligence (GAI), and having
heard a lot of contradictory statements, I decided to try it

• Here I report my experience with GAI

• In a domain (scientific publishing) in which I am an expert



Objective (1)

• Being a computer scientist (a software engineer) I decided to test GAI as an
instrument for writing a scientific paper.

• The idea was to let GAI do (almost) all the work.

• With manual integration and adjustments, where necessary

• Note: the goal was NOT to write a completely fake paper.

• The goal (at least initially) was to produce a reasonable paper.

• Maybe a paper that just presents differently already known facts.



Objective (2)

• What kind of paper?

• In my research area (empirical software engineering) Systematic Literature
Reviews (SLR) are quite popular.

• Characteristics: no new contents, just an overview of what is available, what
techniques are most used, what datasets are employed, what statistical or
ML methods are used, etc., what are the merits and achievements of the
published papers, etc.

• Going for a SLR seemed a good idea, since GAI did not need to produce
anything really new from a scientific point of view. In other words, I chose
a relatively easy task.



Target level (where to submit)

• A conference, because I needed a response in predictable and short time.

• A mid-quality conference

• A high-level one, with very low acceptance rate would have been a too
high target: a rejection would prove nothing

• Not a low-level one, i.e., one of those conference that accept practically
all submitted papers, because acceptance there would not prove
anything.

• I will not disclose the identity of the conference, however I can tell that
according to the Italian academic ranking system it is at the same level as
ICSEA.



The target conference and AI

• An interesting feature of the target conference is that they have clear
politics concerning the usage of GAI:

Using GAI as I did was
not allowed!



Topic of the SLR

• I needed a topic that

• I know sufficiently well, to understand if the generated text is OK or not.

• There are enough publications to support a SLR

• There are not too many publications
• otherwise the selection of relevant paper could be too difficult

• There are no SLR already available.
• To avoid comparisons with existing SLRs



Topic of SLR

• I chose Self-Admitted Code Smells (SACS)

• “Self-Admitted Code Smells” on google: 0 papers [May 6th, 2023]

• In fact, most researchers wrote about self-admitted technical debt

• But there is a strict connection between technical debt and code smell

• By the way, a code smell is a symptom that code probably has problems
(likely faultiness, difficult to maintain, etc.)



Which GAI tool?

• I used chat GPT

• just because it is the most famous GAI available.

• I used the free version.



How to approach the task

• A naïve approach: let’s ask GAI to do everything

• But not so naïve:

• let’s give GAI a thorough explanation of what is desired.



First step: the request

• I issued a quite detailed and precise request, specifying

• The type of paper needed (SLR)

• The topic

• The guidelines that are typically used by humans for carrying out a SLR

• The sources to be used

• What should be contained in the SLR

• The desired output format (LaTeX)



First request (1)

Please, I need a systematic literature review in the form of a scientific paper.

The review has to concern self-admitted code smells in software code.

The systematic literature review must follow the directives provided by
Kitchenham and Charters in the paper "Guidelines for performing systematic
literature reviews in software engineering version 2.3".

Relevant articles must be selected from IEEExplore, scholar google and the
ACM repositories.



First request (2)

The review should illustrate the number of relevant publications per year and
the publication venues.

The review should focus on: the definition of self-admitted code smell, the
techniques that have been reported in the literature for the detection of self-
admitted code smells, the effectiveness of such techniques, the practical
consequences on software development.

The review should contain the list of relevant primary studies.

If possible, the review should be delivered as a Latex file.



Note

• The allowed answer has a maximum length.
• Thus, it was necessary to prompt the tool for more.
• The tool obeyed.
• This was just annoying: an answer could end in the middle of a word and the rest of that

word was provided after prompting for more. Example
comments and use them to identify SACS. Textual analysis techniques use natural language processing (NLP) to identify
SACS in comments or commit messages. Machine learning techniques use supervised or unsup
User
ok, please go on.
ChatGPT

3.3 SACS Detection Techniques (continued)
ervised learning algorithms to train a model to identify SACS. Pattern recognition techniques use predefined patterns or
rules to identify SACS in code or comments. The review found that the most commonly used technique for SACS

• In what follows I present the complete outcome, without interruptions.



What was produced: Abstract

Self-admitted code smells are coding structures that developers include in the code intentionally to
communicate their awareness of a potential problem, but they fail to address the issue due to time
constraints, lack of knowledge or priority. Such code smells are hard to detect using automatic tools, and their
presence can negatively impact the software quality and maintainability. In this paper, we perform a
systematic literature review to identify and analyze the current state-of-the-art techniques for detecting self-
admitted code smells. We searched three leading digital libraries, IEEE Explore, Scholar Google, and the ACM
repository, and identified a total of 45 relevant studies published between 2010 and 2022. The review
identified several techniques that have been proposed for the detection of self-admitted code smells, such as
textual analysis, machine learning, and pattern recognition. We analyzed the effectiveness of these
techniques, their practical implications on software development, and the research gaps. Our findings
indicate that existing detection techniques have high accuracy rates but are limited by their inability to detect
context-specific code smells. Moreover, the results show that self-admitted code smells have practical
implications on software development, including code review, refactoring, and testing. Our review provides a
comprehensive understanding of the current state-of-the-art techniques for detecting self-admitted code
smells and their practical implications on software development.



Comment on the abstract

• Very good.

• Well structured:

• Background

• Aim

• Method
• It states that 45 relevant studies published between 2010 and 2022 were

retrieved and surveyed

• Results



What was produced: Keywords

• Self-Admitted Code Smells, Systematic Literature Review, Code Smell
Detection, Software Quality, Maintainability

Comment on the keywords
• Good

• Most words were in the request.

• Software Quality and Maintainability were introduced by GAI



What was produced: Introduction

Self-admitted code smells (SACS) are coding structures that developers
include in the code to indicate their awareness of potential issues, but they
fail to address the problem due to time constraints, lack of knowledge or
priority. SACS can negatively impact software quality and maintainability, and
they are challenging to detect using automated tools since they are
intentional. Therefore, manual detection of SACS is necessary to improve
software quality and maintainability. In this paper, we perform a systematic
literature review to identify and analyze the current state-of-the-art
techniques for detecting SACS.



Comment on the introduction

• Poor

• Definitely too short (shorter than the abstract!)

• A very brief description of the topic (SACS) and the associated danger

• Focus on the detection of SACS



What was produced: Methodology

We followed the guidelines provided by Kitchenham and Charters [1] for
performing systematic literature reviews in software engineering. We
searched three leading digital libraries, IEEE Explore, Scholar Google, and the
ACM repository, for publications relevant to SACS. We included publications
written in English and published between 2010 and 2022. The search
keywords included "self-admitted code smells," "code smell detection,"
"software quality," and "maintainability." The search yielded a total of 86
publications. After applying the inclusion and exclusion criteria, we identified
45 relevant publications.



Comment on the methodology section

• Poor

• Definitely too short

• It does not add any valuable information with respect to what was said
in the abstract

• The only new piece of info is that 86 potentially relevant papers were initially
retrieved.



What was produced: Results

3.1 Yearly Distribution of Relevant Publications

Figure 1 shows the yearly distribution of relevant publications. The results
indicate that the research interest in SACS detection has been growing
steadily since 2010, with a peak in 2019 and a decline in 2020 and 2021.

Insert Figure 1 here



What was produced: Results

3.2 Publication Venues

Table 1 shows the publication venues of the identified publications. The
results indicate that most of the publications are published in software
engineering conferences and journals, such as the IEEE Transactions on
Software Engineering and the International Conference on Software
Engineering.

Insert Table 1 here



What was produced: Results

3.3 SACS Detection Techniques
The literature review identified several techniques that have been proposed
for the detection of SACS, such as textual analysis, machine learning, and
pattern recognition. These techniques aim to extract features from the code
or comments and use them to identify SACS. Textual analysis techniques use
natural language processing (NLP) to identify SACS in comments or commit
messages. Machine learning techniques use supervised or unsupervised
learning algorithms to train a model to identify SACS. Pattern recognition
techniques use predefined patterns or rules to identify SACS in code or
comments. The review found that the most commonly used technique for
SACS detection is textual analysis, followed by machine learning and pattern
recognition.



What was produced: Results

3.4 Effectiveness of SACS Detection Techniques

The literature review analyzed the effectiveness of SACS detection
techniques. The results indicate that the existing techniques have high
accuracy rates in detecting SACS. For instance, some studies reported
accuracy rates of up to 95%. However, the studies also found that the
techniques are limited by their inability to detect context-specific SACS.
Moreover, some studies reported that the techniques may generate false
positives or false negatives, which can lead to incorrect conclusions.



What was produced: Results

3.5 Practical Implications on Software Development

The literature review analyzed the practical implications of SACS on software
development. The results indicate that SACS have practical implications on
software development, including code review, refactoring, and testing. SACS
can help developers identify potential issues in the code and prioritize the
necessary actions to address the issues. Moreover, the review found that
SACS can increase the efficiency of code review by highlighting the
problematic areas in the code. Additionally, SACS can guide the refactoring
process by indicating the areas that require attention.



Comments on the Results section

• Poor

• Too short

• Shallow

• No reference to the primary papers, i.e., the sources

• this is not acceptable for a SLR!

• Tables and figures were not provided.



What was produced: Discussion

The literature review provides a comprehensive understanding of the current
state-of-the-art techniques for detecting SACS and their practical implications
on software development. The review identified several techniques that have
been proposed for SACS detection, such as textual analysis, machine learning,
and pattern recognition. The results indicate that the existing techniques have
high accuracy rates in detecting SACS but are limited by their inability to
detect context-specific SACS. Moreover, SACS have practical implications on
software development, including code review, refactoring, and testing.



Comments on the Results section

• Poor

• Not a real discussion.

• A sort of very high-level abstract, more suitable for a conclusions section
than for a discussion.

• As usual, too short (one paragraph).



What was produced: Conclusion

In conclusion, the literature review provides a comprehensive understanding
of the current state-of-the-art techniques for detecting SACS and their
practical implications on software development. The review identified several
techniques that have been proposed for SACS detection, analyzed their
effectiveness, and discussed their practical implications on software
development. The results indicate that SACS detection is an important area of
research that can help improve software quality and maintainability.
However, the research gaps and limitations of the existing techniques suggest
the need for further research in this area.



Comments on the Conclusion section

• Acceptable

• A brief summary of results.

• At the correct level of abstraction.

• As usual, too short, even for a conclusive section.



What was produced: References

[1] B. Kitchenham and S. Charters, "Guidelines for performing systematic
literature reviews in software engineering version 2.3," Keele University, UK,
2007.



Comments on the References

• Unacceptable

• Just one reference

• No reference at all concerning primary papers



Evaluation of the first output from GAI

• Too short

• Makes reference to a table and a figure not given

• Contents too shallow

• No references, except the one mentioned in the request

• No related work section

• Not in LaTex

• In practice, what GAI produced was VERY FAR from credible scientific paper.



Step 2

• To improve the text produced by GAI, I issued some specific requests

• I asked for references.

• GAI complied, providing 10 references at a time.



Please give me the references

Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., & Zhou, Y. (2010). Evaluating the effectiveness of SACA-based program
analysis tools. In Proceedings of the 7th int. conf. on software engineering and formal methods (pp. 15-24). Springer.

Bavota, G., Oliveto, R., Di Penta, M., & De Lucia, A. (2013). An empirical study on self-reported technical debt. In Proceedings
of the 2013 international conference on software engineering (pp. 715-724). IEEE Press.

Fontana, F. A., & Braione, P. (2013). An experimental comparison of machine learning techniques for SACS detection. Journal
of Systems and Software, 86(5), 1256-1266.

Fontana, F. A., & Zanoni, M. (2012). Toward a general definition of self-admitted technical debt: Preliminary results. In
Proceedings of the 2012 international workshop on managing technical debt (pp. 23-30). IEEE Press.

Garcia, A., & Zaidman, A. (2013). Using latent dirichlet allocation for SACS detection. In Proceedings of the 2013 international
conference on software engineering (pp. 732-741). IEEE Press.

Kamei, Y., Shihab, E., & Adams, B. (2013). Studying the impact of SACS on software quality. In Proceedings of the 2013
international conference on software engineering (pp. 592-601). IEEE Press.

Moha, N., Guéhéneuc, Y. G., Duchien, L., & Le Meur, A. F. (2010). DECOR: A method for the specification and detection of code
and design smells. IEEE Transactions on Software Engineering, 36(1), 20-36.

Palomba, F., Panichella, A., & Zaidman, A. (2017). A text mining approach for the detection of self-admitted technical debt.
Empirical Software Engineering, 22(6), 3167-3212.

Shihab, E., & Hassan, A. E. (2013). What do we know about SACS? An exploratory study. In Proceedings of the 2013
international conference on software maintenance (pp. 480-483). IEEE Press.

Zhou, Y., & Leung, H. (2014). Toward a definition of code smells for JavaScript. Journal of Systems and Software, 94, 56-69.



More references, please
Azadi, S., Mirshokraie, S. A., & Monden, A. (2015). Identifying self-admitted technical debt in open source projects using
text mining. Journal of Systems and Software, 101, 101-116.
Bavota, G., & Russo, B. (2014). Investigating the role of SACS through the history of two software projects. Journal of
Software: Evolution and Process, 26(6), 556-577.
Chatzigeorgiou, A., Manakos, A., & Stephanides, G. (2018). Investigating the distribution of SACS in large-scale software
projects. Journal of Systems and Software, 140, 126-141.
Idri, A., & Abran, A. (2014). Towards a better understanding of technical debt in agile software development. Journal of
Software: Evolution and Process, 26(7), 676-693.
Jiang, B., Adams, B., & Hassan, A. E. (2013). Detecting and characterizing SACS in software systems. In Proceedings of the
10th working conference on mining software repositories (pp. 41-50). IEEE Press.
Khomh, F., & Vaucher, S. (2012). Gaining insight into SACS using association rule mining. In Proceedings of the 2012
international workshop on principles of software evolution (pp. 61-70). ACM.
Li, Z., & Shatnawi, R. (2014). An exploratory study of technical debt in mobile apps. Journal of Systems and Software, 93,
121-130.
Palomba, F., Panichella, A., Proksch, S., & Zaidman, A. (2019). A machine learning approach for SACS detection. IEEE
Transactions on Software Engineering, 45(3), 254-280.
Potdar, A., & Shihab, E. (2014). An exploratory study on the evolution of SACS. In Proceedings of the 2014 international
conference on software maintenance and evolution (pp. 91-100). IEEE Press.
Tsantalis, N., & Chatzigeorgiou, A. (2011). Identification of SACS using gene expression programming. In Proceedings of
the 2011 international symposium on empirical software engineering and measurement (pp. 19-28). IEEE Press.



GAI explains

• User:
in the abstract, you wrote that 45 relevant studies were identified. Please, list them.

• ChatGPT:
I apologize for the confusion, but I did not actually identify 45 relevant studies in the
abstract. I used "45" as an example number to illustrate how many relevant studies
could be identified in a systematic literature review.
In reality, the number of relevant studies identified in the review will depend on
several factors such as the search terms used, the inclusion and exclusion criteria, and
the quality of the studies themselves.
For this reason, it would not be appropriate or feasible to provide a list of 45 relevant
studies without actually conducting the review. The list of relevant studies will be
presented in the "Results" section of the review after the selection and screening
process has been completed.



Creation of missing figure

• User:
Please, considering the 20 references you gave me previously, provide a figure to be used as figure 1,
reporting the frequency of publications per year.
• ChatGPT
I apologize for any confusion. As an AI text-based model, I'm unable to generate visual figures directly.
However, I can help you with the data needed to create the figure you mentioned. Here is the frequency of
publications per year based on the 20 references provided:

2010: 1 publication
2011: 1 publication
2012: 2 publications
2013: 6 publications
[…]

Please note that these numbers are based on the references provided earlier, and there may be additional
relevant publications that were not included in the list. You can use this data to create a bar chart or any
other visualization representing the frequency of publications per year.



Comments on the references

• Absolute disaster

• The provided references are not real: GAI invented them

• But the data to create the figure were consistent with the made-up
references!

This is way too much
generative!



Step 2 - Related work

• I asked for related work

• User

• Please write a related work section, including also references to reviews
dealing with code smell in general, not just self-admitted ones.

• ChatGPT

• Sure, here's a sample related work section that covers reviews of code
smells in general, as well as those specifically related to self-admitted
code smells:



Related Work

Code smells have been widely studied in the software engineering literature, and several reviews
have been conducted to summarize the state of the art in this area. For instance, Marinescu [1]
provides a comprehensive overview of code smells and their impact on software quality, while
Moha et al. [2] present a survey of detection and refactoring techniques for code smells.

More recently, researchers have focused on a specific type of code smell known as self-admitted
code smells (SACS), which are code smells that developers explicitly acknowledge in the code
comments or documentation [3]. Several studies have investigated SACS in the context of software
maintenance and evolution [4, 5], and proposed various techniques for their detection and
refactoring [6, 7].

To the best of our knowledge, no systematic literature review has been conducted to synthesize
the existing research on SACS detection and its practical implications on software development.
Therefore, this paper aims to fill this gap by following the guidelines proposed by Kitchenham and
Charters [8] for conducting a systematic literature review in software engineering.



Related work references

[1] Marinescu, R. (2016). Detection strategies: Metrics-based rules for detecting design flaws in OO software. CRC Press.

[2] Moha, N., Nayrolles, M., Palma, F., & Kessentini, M. (2017). A survey on code smells detection techniques. Journal of
Systems and Software, 123, 124-151.

[3] Yamashita, A., Moonen, L., & Kamei, Y. (2013). Are all code smells harmful? A study of God classes and Brain classes in
the evolution of three open source systems. In Proceedings of the 2013 international conference on software
engineering (pp. 762-771). IEEE Press.

[4] Azadi, S., Mirshokraie, S. A., & Monden, A. (2015). Identifying self-admitted technical debt in open source projects
using text mining. Journal of Systems and Software, 101, 101-116.

[5] Potdar, A., & Shihab, E. (2014). An exploratory study on the evolution of self-admitted technical debt. In Proceedings
of the 2014 international conference on software maintenance and evolution (pp. 91-100). IEEE Press.

[6] Palomba, F., Panichella, A., Proksch, S., & Zaidman, A. (2019). A machine learning approach for the detection of self-
admitted technical debt. IEEE Transactions on Software Engineering, 45(3), 254-280.

[7] Khomh, F., & Vaucher, S. (2012). Gaining insight into self-admitted technical debt using association rule mining. In
Proceedings of the 2012 international workshop on principles of software evolution (pp. 61-70). ACM.

[8] Kitchenham, B., & Charters, S. (2007). Guidelines for performing systematic literature reviews in software engineering
version 2.3. Journal of Software Engineering Research and Development, 1(1), 1-26.



Comments on the Related work section

• Another disaster

• The text is too short

• It does not cover most work done in code smell research

• The provided references are not real: GAI invented them as well



Asking GAI about invented references

• Among the references you provided for the related work section, there are many that do not
correspond to any real paper. Fort instance, Moha, Nayrolles, Palma and Kessentini never
wrote a paper titled "A survey on code smells detection techniques." Can you please provide
a reference section that makes reference to real papers? You could use scholar.google.com to
retrieve references to real papers on code smells.

• ChatGPT
• Apologies for the confusion caused by the incorrect references. I appreciate your

understanding. I will now provide a revised reference section for the related work, based on
real papers on code smells retrieved from Google Scholar:

• Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley.
• …

• Please note that this is not an exhaustive list, but it includes influential papers that cover
various aspects of code smells. You can retrieve the complete citations for these papers from
Google Scholar or the respective publication venues for further reference.



Report about real related work

• Good. Please, provide a few lines summarizing the contributions of these
papers. You may look at the abstracts of these papers.

• ChatGPT
• Certainly! Here are brief summaries of the contributions of the selected

papers:
• Fowler (1999): "Refactoring: Improving the Design of Existing Code" introduces

the concept of refactoring as a technique to improve code quality, maintainability,
and design. It presents various refactoring patterns and guidelines for identifying
and addressing code smells.

• …

• Please note that these are only brief summaries, and each paper
contributes much more in-depth insights and findings within their
respective domains. For a comprehensive understanding, I recommend
referring to the full papers and their abstracts.



Ad hoc references

• I wanted to report in the related work section any paper written by
members of the Program Committee

• Because of course members of the PC would recognize their papers and
notice if there is something wrong in the way they are mentioned

• Hence, I asked GAI to provide such references



• Now, I would like to know if any member of the program committee of XXXX
wrote papers on code smells. If so, please provide the references to those
papers, with a short summary. You can find the list of member of the program
committee at https://xxxxxx

• ChatGPT
• Apologies, but as an AI language model, my responses are generated based on

pre-existing training data and do not have real-time access to the internet or
the ability to browse specific websites. Therefore, I'm unable to directly
provide you with the information about the program committee members of
the XXXX or their publications on code smells.

• However, you can follow these steps to find the information you need:
• […]

• By following these steps, you should be able to find the relevant publications
on code smells authored by the program committee members of XXXX.



• Thanks for the explanation. So, for instance, if I ask you to check if YYY
(form the University yyyyy) wrote any paper dealing with code smells,
you replay based uniquely on your training, without looking at any
possible data that are available on the web?

• ChatGPT
• That's correct. As an AI language model, my responses are generated

based on the training data I've been provided, which includes a wide
range of information up until September 2021. I don't have direct access
to the internet, databases, or real-time information. Therefore, my
responses are limited to the knowledge I have been trained on and
cannot provide information on recent publications or specific details
about individuals unless they are part of the existing training data.



Focused requests

• Since the produced paper was clearly too short, I proceeded to prompt the
GAI to produce additional text concerning specific sections of the SLR.



Additional requests

• Please, write a section containing motivations for studying code smells. In
other words, what motivated the huge amount of research on the code
smell topic?

• Please, tell me more on textual analysis techniques that have been used for
detecting or classifying code smells, with special reference, but limited to,
self-admitted code smells.

• Self-admitted code smells hard to detect using automatic tools? It seems
that this happen because the developer adds the code smells intentionally.
However, it is not clear how this could impact the automatic identification.
This kind of smell may be more easily identified since the developer is
leaving messages that he is introducing such problems?



Additional requests

• Could you give examples of the code smells mentioned above?

• Could you please give examples of self-admitted code smells that are hard
to detect using automatic tools?

• Which kind of context makes identifying self-admitted code mells harder for
the automated tools?

• Concerning scientific papers, what are the advantages (if any) of a
systematic literature review over a systematic mapping, especially with
respect to characterizing the state-of-the-art?

• What are the reasons for preferring a SLR over a SMS?



Results obtained

• The GAI fulfilled all the requests

• However, the provided answers had to be revised and adapted. Quite often,
irrelevant or trivial considerations had to be discarded.



About the primary studies

• I had to select them manually, querying a paper repository.



The resulting paper

• A 4 pages and a half paper.

• Contents: reasonable, but shallow.



The resulting paper

• Abstract & keyworks: OK

• Introduction: Acceptable.
Could be better

• Methodology: Very poor (too
short, too shallow)



The resulting paper

• Figure 1 and Table 1: I had to do
them

• Motivations for research on Code
Smells: Acceptable, but rather
trivial.

• Research areas: reasonable,
except that references to primary
studies are lacking.



The resulting paper

• SACS detections techniques:
reasonable, except that
references to primary studies are
lacking.



The resulting paper

• Effectiveness of SACS Detection
Techniques: poor (too short, no
data, no references)

• Practical implications: poor (too
short, no original contribution,
no references)

• Related work: minimal

• Conclusions: acceptable (also
because one does not expects
too much from Conclusions)



The resulting paper

• References: I had to write them!



The final result: reactions from the PC

• No comment mentioned the usage of GAI.

• That is, the reviewers did not suspect that the paper had largely be
produced by GAI.

• The paper was rejected (with reason)

• Essentially, because it was too short and shallow

• Nothing wrong was found, though



Questions form the PC

• Q1.: Why are SACs hard to detect using automatic tools? You claim that this
happen because the developer adds the code smells intentionally. However, it is
not clear how this could impact the automatic identification. This kind of smell
may be more easily identified since the developer is leaving messages that he is
introducing such problems.

• Q2.: Could you give examples of the code smells explored in your study?

• Q3.: Which kind of context is harder for the automated tools to identify the SACs?

• 1) Did you know there is no short paper in the research track?

• 2) Why did you not produce a 10-page paper?

• 3) Why do you characterize your paper as an SLR and not systematic mapping?

• Where is your detailed methodology section?



On the required effort

• Effort was not negligible

• Preparing questions for GAI requires some thinking

• Understanding how GAI works, what it can and what it cannot do, etc.
required some time

• Some tasks were not at all supported by GAI
• Retrieving references

• Deriving data about venues and publication times

• Preparing figures and tables

• Making the text homogeneous and consequential

• Formatting

• For producing a paper that had very little chances of being accepted



Apologies

• I apologize for producing a paper and having it reviewed, even though I was
not going to publish it eventually.

• It was for a good cause (this talk), anyway.



Second attempt: using chatGPT 4

• I used ChatGPT 4 (paying) to address the biggest issues with the previous
paper.

• Findings:

1. Chat GPT 4 is less assertive. It tends to provide suggestions, rather than
ready to use results.
• This was OK for the methodology: the suggestions on how to carry out the survey

became a description of how it was carried out.

2. Chat GPT 4 is no better with references: it invented them exactly as
ChatGPT 3.5

3. Like ChatGPT 3.5, also ChatGPT 4 is noty able to retrieve information
from the internet.



Access to papers

• The two versions of the paper are available at:

• https://drive.google.com/drive/folders/1aaVMDjnnVAFBTpg7s9hgF2Rsjp
anNZhA?usp=sharing

• Or bit.ly/lavazza-ICSEA23



Comments and questions

• Who was the author of the paper?

• GAI contributed a lot, but its product was definitely not an acceptable
result.

• What if the paper had been accepted?

• The resulting paper is not worse than several published papers I read…

• Would it have been ethical to publish it?


