

Universidad de Jaén

The Fifteenth International Conference on Advanced Geographic Information Systems, Applications, and Services GEOProcessing 2023 April 24, 2023 to April 28, 2023 - Venice, Italy



# Towards accurate traceability of water reaching the reservoirs

Authors (University of Jaén) Lidia Ortega (Computer Science) Isabel Ramos (Cartographic Eng., Geodesy and Photogrammetry) Ángel Calle (Researcher in Comp. Sci)

UJa.es

# Index

- The problem of chemicals arriving the reservoir
- The context
- Objectives
- Some previous attempts
- Solution overview
  - Input data
  - Phases 1 and 2
  - QGIS plugin
  - Data analysis

# The problem of chemicals arriving the reservoir

- Rumblar reservoir in Jaén, Andalussia (Spain)
- The reservoir supplies water to 88.000 inhabitants
- Today is at 10% of capacity
- In the basin of the reservoir there are several villages, forests and crops, especially olive groves.





# The context

#### The problem

- Chemical analysis determines high levels of nitrates and other substances in the reservoir
- Reservoirs supply drinking water to the population
- The reservoir is surrounded by crops (olive groves)
- It's not easy to know which plots contribute the most to these discharges

#### **Proposed solution**

- To establish correlation between chemical analysis points and origin
- Tracking the water through its path to the reservoir
- Considering:
  - orography
  - land use type (agricultural, etc.)
  - soil absorption
  - rainfall maps

# Objectives

- Obtain information about water traceability arriving at a reservoir
- Which crop plots contribute with rainwater and in which percentage
- Make easy the process of analysis to the end-user
- Contribute to soil conservation and water quality
- Use a real use case: the Rumblar reservoir



### Some previous attempts

#### By simulation software (Maya)

- Good visual results
- No control on the process
- No empirical results



# GIS tools (QGIS)

- 2D image and additional layers
- No control on the process
- No control on new variables



# **Solution overview**

# Extend D8 algorithm for drainage network

- Two executions of the D8 algorithm
- <u>Algorithm 1:</u> obtains
  **R**epresentative **P**oints
- <u>Algorithm 2:</u> stores all the information about traceability in these RPs
- Implement QGIS plugin for the end-user



# Input data

#### Several files are required:

- DEM (orography)
- plot polygons and land use
- rainfall maps







### **Phase 1: find Representative Points**

# An RP is a point in which flowing water overcomes a threshold

- These are points belonging to the drainage network
- The user can add new points, ARP (Additional Representative Point) (e.g. for specific chemical analysis)
- Interesting points are those close to the reservoir



# Phase 2: study water traceability in RPs

# For each RP a tree-based data structure maintains:

- For each iteration of the process
  - the accumulated water and the agricultural parcel from which the water originates
- The data structure maintains O(n\*k\*p) entries
  - n = # RP points
  - k = # iterations of the algorithm
  - p = # plots pouring water in the RP



# Phase 3: QGIS plugin

#### Python plugin with the functionality:

- Define color range
- Click on a RP point (interactive)
- Obtain visual and textual information





# Phase 4: Data analysis

#### Information sorted by contribution:

- Choose different rainfall maps
- Observe the plots that most contribute
- Obtain information about the water accumulated (approximated)



# The Rumblar reservoir

# Thanks for your attention

#### Questions??

Lidia Ortega (lidia@ujaen.es)