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Software change impact analysis plays an important role in controlling
software evolution in the maintenance of continuous software development.

Modification
targets

Background: Importance of impact analysis

Modification
candidates

Large source code base

Component 4

Component 1

Component 2Component 3

Component 5

• It is important to improve the accuracy and efficiency to obtain modification candidates.
This is because it is difficult to automate determining whether a modification candidate is really a
modification target or not, requiring a lot of efforts.

• However, the problem is that it depends on the amount of developer's knowledge about the source
code base.

Impact analysis
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Traceability: established linkage between multiple deliverables in the development process[1]

Traceability links: information that shows the relationship between specific
artifacts

[1]Udagawa Y.,et al. Traceability in Information System Development Standards: A Case Study and Its Future. IPSJ,2010,51.2.:150-158
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Proposed method: Learning from change histories.
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• To learn from a large number of change histories from past projects, and
• To create modification candidates from a change request.

Change histories

The system does something
when something happens.

Modification target 1
〜Change〜to…

Modification target 2
〜Change〜to…

outputs

：

Input

Text vectorization
＋machine learning

learning

Change design specification

• To learn from a large number of change histories from past projects, and
• To create modification candidates from a change request.

Change Request
（Japanese)

Request are between 20 and 400
characters in Japanese text.

New Change Request
Input

List of modification
candidates

Output

1 component 5
2 component 3
3 component 28

:Text vectorization
＋machine learning

• Not necessary to establish links in advance
• Applicable to new change requests
• Create modification candidates directly

Our method is:

Problems to be solved
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Proposed method: composition of the algorithm
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Three implementations were evaluated

1. Word extraction 2. Word Vectorization 3. Vector association

Implementation 1 noun only word2vec simple average

Implementation 2 All word2vec doc2vec

Implementation 3 noun only word2vec doc2vec

1

2

3

Word extraction

Selection by developer

(Weighting)

weighted average

Extract nouns only

simple average

Vectorizing steps Possible choices

Word vectorization word2vec

Vector
association

doc2vec

Full morphological selection
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Hyper Parameters
• Number of studies performed: 50
• Batch size: 50
• Learning rate: 0.1
• Loss function: binary cross-entropy error
• Weight parameter update method: SGD

full
coupling

(1000)

full
coupling

(500)

full
coupling

(300)

full
coupling

(100)

ReLu ReLu ReLu output

(32)
sigmoidinput

(100)

Component vector(32)
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Vectorized sentence (100)

[2] Y. Iwasaki, Proposal of a system that recommends candidate program changes from requirement
text by learning past change, 2020

Configuration of the NN

The source code base
used in our experiments
has 32 components
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We defined three indexes for the given threshold of
Sigmoid value.

Threshold

S
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＝
（ ）
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＝
（（ ） ）

C

Threshold A)Accuracy in
the candidate

range

B)Percentage of
correct answer

C)Missing
rate

0.06 30.0％ 35.0％ 23.0％

The results of the previous study.

Missing modification targets has serious consequences.

・
・
・
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Adopting multi-label classifiers that
model the co-occurrence relationship

Dependencies arising from architecture

Hypothesis

From the architectural point of view, some
components may use common resources, or
some call relationships exists between layers.

Idea for improvement

A specific change pattern may cause
modification of the same combination of
components

Rationale

Layer BLayer B

Component B1 Component B2 Component B3 Component B4

Layer ALayer A

Component A1 Component A2 Component A3 Component A4

Common
Resources

call relationship
call relationship
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• Previous study

Neural Network(NN)

• Basic Methods for Handling Multilabel Classification

Binary Relevance （BR）method

• Methods modeling co-occurrence relationships

Label Powerset（LP）method

Random k-Labelsets（RAkEL）methods
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Basic Methods for Handling Multilabel Classification
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Binary Relevance （BR）method

0

1

2

0

0

1

1

0

：

：

• Binary Relevance (BR) is a multilabel classification method, which
learns a binary model for each label independently of the rest.

• This method does not model the co-occurrence relationships.

Vectorized sentence Modification candidates
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• Previous study

Neural Network(NN)

• Basic Methods for Handling Multilabel Classification

Binary Relevance （BR）method

• Methods using co-occurrence relationships

Label Powerset（LP）method

Random k-Labelsets（RAkEL）methods
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Vectorized sentence Modification candidate
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1

0
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Algorithm 1 for modeling the co-occurrence relationship

 LP is a multilabel classification method that models the co-occurrence
relationship, considering all distinct combinations of labels as a different class
and conducting a single-label classification for each.

14

Label Powerset（LP）method

Disadvantage large amount of calculation and over-learning

Estimation Results for each label in the class

label1 label2 ・・・ label31 label32

set[1,2] 0.1 1 0 ・・・ - -

set[31,32] 0.2 - - ・・・ 1 0

: : : : : : :

set[1,2..,32] 0.3 1 0 ・・・ 0 1

0.1*1 +

0.3*1
0 ・・・ 0.2*1 0.3*1

class
Probability of

occurrence of class

Total evaluation

Set[1]

Set[2]

Set[3]

Set[4]
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• Previous study

Neural Network(NN)

• Basic Methods for Handling Multilabel Classification

Binary Relevance （BR）method

• Methods using co-occurrence relationships

Label Powerset（LP）method

Random k-Labelsets（RAkEL）methods
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Algorithm 2 for modeling co-occurrence relationships
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Random k-Labelsets（RAkEL）methods

component list

・
・

Set １

Set 2

・
・
・

Set L

LP method

LP method

LP method

• RAkEL is a multilabel classification method that models the co-occurrence relationship, breaking the
initial set of labels into a number of small random subsets, called labelsets and employing LP to train a
corresponding classifier.

Set size ：k
L pieces at random

T1: Number of cells whose estimated result is 1 ，Mi: Number of cells with estimated results

Estimation Results for each Label

label1 label2 ・・・ label31 label32

set[1,31] 1 - ・・・ 0 -

set[2,31] - 0 ・・・ 1 -

: : : : : :

set[1,2,..32] 0 0 ・・・ - 1

Total

evaluation
T1/M1 T2/M2 ・・・ T31/M31 T32/M32

Class



Software Engineering Lab

中島研Experiment

The four methods were evaluated using the same field data.
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To investigate whether the LP and RAkEL methods, which model the co-
occurrence relationship, improve accuracy or not.

Purpose of experiment

Multi-label classification
method

Classifier

M1:Neural Network(NN)

M2:BR method SVM

M3:LP method SVM

M4:RAkEL method SVM
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Data used in the experiments

Change design
specifications request sentence

component list

Multiple classification Method

Modification candidate

request sentence

Training data(324)

Test data(81)

Total data is 405.
(study)
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The threshold was set so that the candidate range ratio is around 30 percent.

Improved 5.9% → ①

M3 is 5.9% worse than M2→ ②

Improved 1.5% → ③

① M2 is more accurate than M1→ SVM is an excellent classifier
Result

RAkEL provides the best results, meaning to model the co-occurrence relationship has a
good effect to reduce missing rate. However their missing rates are not at enough level for
the practical use.

② M3 is less accurate than M2 → Small number of data could have caused overlearning.

③ M4 is the most accurate one.

Method Candidate Range ratio
Accuracy in the
candidate range

Missing rate

M1:NN 30.00%(0.06) 18.00% 23.00%

M2:BR＋SVM 29.10%(0.06) 19.10% 17.10%

M3:LP+SVM 29.70%(0.06) 22.20% 23.00%

M4:RAkEL+SVM 29.50%(0.07) 24.50% 15.60%
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Summary

• We proposed an impact analysis method that learn change histories to directly create modification
candidates.

• To improve the previous study, which use NN as the machine-learning component, we proposed
a multi-label classification method considering the co-occurrence relationship

• The effectiveness of this method was confirmed by an experiment using BR, LP, and RAkEL
methods.

Future Issues

• Application of an improved algorithm for the RAkEL method
• Validation by using the other data set (from OSS)
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•± σ (σ interval): 68.3%
•±2σ (2σ interval): 95.4%
•±3σ (3σ interval): 99.7%

z-distribution diagram

Utilizes standard deviation (σ), a value often used in quality control
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Supplementary material: Target projects used for the study
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Project 1 Project 3Project 2 ・・・ Project 30

change requests(10)

same program entity

(annual)

Approximately 300 in total

(average)

• Each project modifies the program matrix for multiple change requests
• Create a change design document for each change request

change requests(10) change requests(10) change requests(10)
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Performance targets, taking into account the extent to which this is
possible in terms of actual audits：
Candidate Range ratio ≦ 30% and, Missing rate ≦5%

research goal

Apply and evaluate machine learning methods that consider co-
occurrence relationships to reduce the hazard rate that has been

the subject of previous research.


