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Introduction

• Load forecasting:
Efficient monitoring, resource 
management, decision making.

• Need for accurate and fast electrical load 
predictions.

• Traditional approaches:
Statistical methods

• Modern approaches:
Machine learning, artificial intelligence, 
hybrid techniques.
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• Comparative study of several structural 
morphologies of MLPs.

• Investigate load forecasting accuracy for:

One, twelve and twenty-four time-
steps ahead.

• Data from the Greek Power System for 
the years 2017- 2019.



Dataset Overview & Evaluation Metrics

• Dataset consist of:
Hourly measurements load (MW),
Temperature (°C),
Relative humidity (%)
Temporal variables for the hour and 
day of the week.

• Evaluation Metrics:
MAE, MSE, MAPE.
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Study Case Analysis

• Univariate and multivariate load forecasting tasks.

• Number of neurons in the output layer = number of 

predicted output variables.

• Brute force optimization algorithm:

Optimal hyperparameter selection on the various 

MLPs morphologies.
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Hyperparameters

• Hyperparameters:
number of neurons in the hidden layer,
number of epochs throughout the training process.

• Each MLP comprises of a hidden layer.

• Minimum acceptable number of hidden neurons: half of the number of neurons 
in the input layer.

• Maximum number of hidden neurons can reach up to three times the number of 
input neurons.

• The ideal number of epochs: within the closed interval [200, 2000].
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Case A: One Hour Ahead Load Forecasting

• 11 neurons in the input layer:

A label for the time for which the forecast is being performed.

A label to identify the day being predicted. Sunday is represented by the value 1, 

Monday by the value 2, etc.

Hourly temperature value.

Hourly humidity estimation.

Seven hourly load values for the period from the current time up to one week in 

beforehand of the prediction.
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Case B: Twelve Hours Ahead Load Forecasting

• 109 neurons in the input layer:

An integer, serving as a label to identify the day being predicted.

A vector consisting of 12-hourly temperature values.

A vector consisted of 12-hourly humidity estimations

A vector of 84-hourly load values.
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Case C: Twenty-Four Hours Ahead Load Forecasting

• 217 input neurons:

An integer acting as a label to designate the day being forecast.

A vector consisting of 24-hourly temperature values for the day of which the 

prediction is conducted. 

A vector consisted of 24-hourly humidity values for the day of which the 

prediction is conducted. 

A vector of 168-hourly load values.
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Optimization Results

Results of the optimization approach for each case study.
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Accuracy Metrics

Forecasting results of the investigated MLPs architectures
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Graphical Comparison of Forecasting Results
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Conclusion

• The error values for the one hour ahead, and twenty-four hours ahead forecast 

are very similar in terms of error metrics.

• The twelve hours ahead model exhibited improved performance compared to the 

other forecasting horizons.

• The algorithm can adapt to multi-step ahead forecasting.

• Future work: can be implemented on Demand Side Management and Demand 

Response programs
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