ComputationWorld 2023 & NexComm 2023

Theme
Quality of Data/Information and the Accuracy AI-based Tools
From “Garbage IN, Garbage OUT” to Cleansing and Deep Learning

Human Common-sense decisions vs. Machine fact-based decisions in driving and possible discrepancies

Awareness on Data accuracy and Precaution on Trusting Information Processing

How to Securely and Safely benefit from AI-based technologies advances with no harms for Humans?

Case studies (avionics, automotive, agriculture, etc.)
Mgr. Dr. Mirnig Alexander, AIT Austrian Institute of Technology, Center for Technology Experience, Austria, IARIA Fellow

Prof. Dr. Petre Dini, IARIA, USA/EU, IARIA Fellow
Knowledge and Information of any kind

--> ~99% undetected/not check-able false information
(on purpose coalitions, or simple fake, or science fiction)
and
--> ~1% fact-checked information

--> any inference leads to biased, unproved, and
unanimously (falsely) trusted facts/conclusions

My conclusion: no intelligence (artificial, human) can be
trusted until 'fact checked' and properly interpreted.
Facts checking: validation, logic, transparent process, etc.
Conclusion: Human common sense prevails
BIG | the Vs | 3v, 5v, 7v, 10v, …. ?

- **Volume** (length of a records, # of records) (entity-relationship databases)(datasets) \(\|\) BIG vs. HUGE
- **Variety** (types: strings, pictures, voice, etc.) (structured, non-structured)
- **Veracity** (precision and accuracy of data)
- **Velocity** (of change)
- **Value** (as a business/service) IMPACT
- **Vollatility** (temporary; quick action)
- **Vasting resources** (storage, computation, transfer)
 - incomplete
 - redundant
 - inconsistent
 - noisy
- **Viability** (are data still useful?)
- **Visibility** (open, hidden, ..)
- **Validity** (are there still valid/updated data?)
 (in context validity)
 (e-government datasets)
 filling missing values with estimated values calculated for complete records of the same dataset
• **AI-based Health Applications**
 - Pharmacology
 - Personal healthcare
 - Medical accuracy and precision
 - Medical Robots

• **Society domains**
 - Automotive
 - Avionics
 - Industry (Industry 5.0)
 - Agriculture (Precision agriculture)
 - Financial (Gain Optimization)
 - Energy (Solar Panel/Windmill management)
 - etc.

• **Data Processing is a complex process**
 - Profiling (statistical analysis, pattern recognition, and data visualization)
 - Cleansing (deduplication, standardization - consistent formats and units-, validation (against predefined rules or reference data, etc.))
 - Validation (data type validation, range validation, format validation, and referential integrity checks to ensure data consistency)
 - Establishing data quality metrics (completeness, accuracy (error/correctness), consistency (e.g., percentage of conflicting data), timeliness (e.g., data freshness or latency), and uniqueness (e.g., the number of duplicate records)).

Awareness on Data Provenance and Data Pre-processing

Explainability of processes and output
CASE STUDY: Mobility

Mobility

- Automated mobility is reliant on sensing accuracy
 - Geographical Positioning
 - Distance to other objects
 - Object recognition
 - Trajectory estimation (own and other agents’)

- Reduction in accuracy leads to
 - Decreased performance, safety, and mitigating measures (e.g., lower overall speeds), eventually resulting in
 - A reduced Operational Design Domain (ODD)
Recommender Systems

• Provide condensed, action-specific output, often on the basis of large volumes of data that are too big to be easily processed by humans.
 • E.g., process management systems

• Modern recommender systems are frequently AI-based to increase robustness and enable extension towards process modifications, additional parameters or agents (e.g., machine types).

• Recommender systems typically do not evaluate their output in-UI (if below threshold, it will not be chosen or shown).
What if...

• Automation can be seen analogous to recommender systems
• A recommender, instead of providing single-level output, can provide recommendations on its recommendations.
• The output is accompanied by information on the expected reliability of the output
• Not all data sources are equal, output should reflect that.
• AI can estimate and inform about their own estimated accuracy, thusly enable more informed use of the system
• Thereby: anticipate and prevent errors or undesired consequences, integrate the human in the loop as an informed agent, extend the scope (or ODD) of the technology.
Stage for the Audience