
1

Graph Data Models
MALCOLM CROWE, FRITZ LAUX

DBKDA 2023

 Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

 He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

 He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001 were on Programming Languages and Cooperative
Work.

 Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

 Prof. Crowe has recently been appointed an IARIA Fellow.

Malcolm Crowe
University of the West of Scotland

Email: malcolm.crowe@uws.ac.uk

2

 Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information Systems at

Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and PhD (Dr. rer. nat.) in

Mathematics.

 His current research interests include

• Information modeling and data integration

• Transaction management and optimistic concurrency control

• Business intelligence and knowledge discovery

 He contributed papers to DBKDA and PATTERNS conferences that received DBKDA 2009 and

DBKDA 2010 Best Paper Awards. He is a panellist, keynote speaker, and member of the

DBKDA advisory board.

 Prof. Laux is a founding member of DBTech.net (http://www.dbtechnet.org/), an initiative of

European universities and IT-companies to set up a transnational collaboration scheme for

Database teaching. Together with colleagues from 5 European countries he has conducted

projects supported by the European Union on state-of-the-art database teaching.

 He is a member of the ACM and the German Computer Society (Gesellschaft für Informatik).

Prof. Dr. Fritz Laux
(Retired), Reutlingen University
Email: fritz.laux@reutlingen-university.de

3

https://eu-west-1.protection.sophos.com/?d=dbtechnet.org&u=aHR0cDovL3d3dy5kYnRlY2huZXQub3JnLw==&i=NjA2MmU2NGYwYjBjYmUwZTZlMzUzNGNj&t=NmFLZXNtMDU2NVI5RytLeUp3Z2tzaHRvb1YweURzcG9wWWEyRGVEQ0xoYz0=&h=35c90459daf54f4db46e5a2af80b7f29)

4

Plan of this presentation

 The Typed Graph Model TGM (review)

 TGM and relational data

Why a combined approach?

Graph Modeling approach:

Creating a TGM by instances

And using MATCH to query its contents

RDBMS version

Creating and modifying using SQL

Current status and conclusions

 The Typed Graph Model

5

The Typed Graph Model
 A typed graph schema is a tuple TGS=(NS,ES,ϱ,T,τ,C) where:

 NS is the set of named (labeled) objects (nodes) n with
properties of data type t:=(l,d)∈ T, where l is the label and d
the data type definition.

 ES is the set of named (labeled) edges e with a structured
property p:=(l,d)∈ T, where l is the label and d the data type
definition.

 ϱ is a function that associates each edge e to a pair of object
sets (O,A), i. e., ϱ(e):=(Oe,Ae) with Oe, Ae ∈℘(NS). Oe is called
the tail and Ae is called the head of an edge e.

 τ is a function that assigns for each node n of an edge e a pair
of positive integers (in,kn), i. e., τe(n):=(in,kn) with in ∈N0 and kn∈N.
The function τ defines the min-max multiplicity of an edge
connection. If the min-value in is 0 then the connection is
optional.

 C is a set of integrity constraints, which the graph database
must obey.

 Why RDBMS support

6

Reasons to add SQL support

 The SQL programming model is well

known

Most organisations have an RDBMS so

it avoids having a separate product

and support team

SQL queries can process graph data

Graph methods can be used for SQL

data

 An example

7

An example: graph creation
CREATE

(Joe:Customer {"Name":'Joe Edwards',
Address:'10 Station Rd.'}),

(Joe)-[:Ordered {"Date":date'22/11/2002'}]->
(Ord201:"Order")-[:Item {Qty: 5}]->
("16/50x100" : Woodscrew : Product),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm" :
Wallplug: Product),

(Ord201)-[:Item {Qty: 1}]->("500ml" :
Rubberglue : Product)

 Schema implementation

8

Schema Implementation
 The TGM can be implemented in a relational

DBMS as follows:

 Each node type and edge type defines a base
table, whose rows are the node and edge
instances

 There is a predefined primary key ID for both
nodes and edges, which is an autokey

 The relationship of edges to nodes is as two
predefined foreign keys LEAVING and ARRIVING
in each edge table

 Node and edge properties are columns in the
node and edge types

 We support subtypes for edge types

 A graph query

9

A graph query

MATCH (_)-[:Item {Qty:_Q}]-> (_Y:_T)
where Q>4

 Graph definition

10

Graph definition
 If a graph is entered as in Neo4j by giving node and

edge instances, the graph and edge types are
incrementally inferred by the DBMS engine

 Nodes (..) and Edges (..)–[..]->(..) (..)<-[..]-(..) can be
strung together, so a graph can be constructed by
CREATE and a comma-separated list of instances

 Nodes and edges can be introduced id:label with
properties in JSON notation

(Joe:Customer {Address:'10 Station Rd'})

 And similarly for edges

 Nodes can be later referenced using their ID

(Joe)

 The properties of a node or edge once defined can only
be changed using SQL

 Graph creation again

11

An example graph creation
CREATE

(Joe:Customer {"Name":'Joe Edwards',
Address:'10 Station Rd.'}),

(Joe)-[:Ordered {"Date":date'22/11/2002'}]->
(Ord201:"Order")-[:Item {Qty: 5}]->
("16/50x100" : Woodscrew : Product),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm" :
Wallplug: Product),

(Ord201)-[:Item {Qty: 1}]->("500ml" :
Rubberglue : Product)

 What the DBMS does

12

What the DBMS does
CREATE TYPE CUSTOMER AS ("Name" char, ADDRESS char) NodeType

INSERT INTO CUSTOMER VALUES('JOE','Joe Edwards','10 Station
Rd.')

CREATE TYPE "Order" NodeType

INSERT INTO "Order" VALUES('ORD201')

CREATE TYPE ORDERED as ("Date" date) EdgeType (CUSTOMER,
"Order")

INSERT INTO ORDERED VALUES ('554','JOE','ORD201',date'2002-11-
22')

CREATE TYPE PRODUCT NodeType

CREATE TYPE WOODSCREW UNDER PRODUCT

INSERT INTO WOODSCREW VALUES ('16/8x100’)

CREATE TYPE ITEM as (QTY int) EdgeType("Order",PRODUCT)

 INSERT INTO ITEM VALUES('1004','ORD201','16/8x100',5)

And so on. Also, we need index constraints (not illustrated)

 Using SQL for definition

13

Using SQL to define graphs
 Node and edge types can be created and

modified using CREATE TYPE and ALTER TYPE
by adding the metadata NODETYPE or
EDGETYPE(leaving,arriving)

 If N is a node type, INSERT into N works, as
does UPDATE and DELETE, and similarly for
edge types

 SELECT from node and edge types works

 A good strategy is to predefine data types
using SQL and then use CREATE to build the
graph

Using MATCH

14

Using MATCH
 The Neo4j MATCH statement is available

MATCH graph [where] [statement]

 The graph part is as in CREATE, except that dummy
identifiers can be used for nodes and edges,
preceded by _

 The result of MATCH is a table of possible values for
these identifiers such that the graph fragment is
found in the database

 Subject to the where condition if any

 The optional statement says what is to be done with
these values, otherwise they are returned like in
SELECT

 We can also use MATCH as a source of data for
SELECT and INSERT

 An example

15

A MATCH example

SQL> match (_)-[:Item {Qty:_Q}]-
>(_Y:_T) where Q>4

16

Integrating MATCH and SQL

Match can be used as a query (as in

the last slide)

Match can be used as a subquery for

predicates etc (not yet for joins)

Match can supply rows to be inserted

in another table

Insert into T (MATCH ..)

 Extra work done by the DBMS

17

Extra work done by the DBMS

Node and Edge ids need to be unique

so the DBMS has an index for this

 The DBMS also keeps a list of the

connected graphs to speed up

searching

MATCH statements address the entire

database

 Conclusions

18

Predefining Graph types

create type student as (matric char)

nodetype

 insert into student values

('Fred','22/456')

 Subtypes

19

Transforming types

create type person nodetype

alter type student set under person

20

Extending node types

create type staff under person as (title

char)

 insert into staff values ('Anne','Prof')

 select *,specifictype() from person

21

Friends of Friends
create type friend
edgetype(person,person)

[create trigger sym after insert on
friend referencing new as nr for each
row

if not exists (select id from friend
where leaving=nr.arriving and
arriving=nr.leaving)

then insert into
friend(leaving,arriving) values
(nr.arriving,nr.leaving) end if]

22

Symmetric edges

insert into person
values('Joe'),('Mary’)

insert into friend(leaving,arriving)
values('Joe','Mary'),('Mary','Fred')

select id from friend where
leaving='Fred'

23

Conclusions

 This merging of TGM with relational

technology allows graph oriented

data manipulation and queries

Some realistic examples of the

approach would be nice

Extra graph-oriented syntax may be

helpful, and metadata for multiplicity

 There is a potential for supporting

interactive data modeling

 References

24

References
1. F. Laux and M. Crowe, Information Integration using the Typed

Graph Model. DBKDA 2021: The Thirteenth International
Conference on Advances in Databases, Knowledge, and

Data Applications, IARIA, May 2021, pp 7-14, ISSN 2308-4332,

ISBN 978-1-61208-857-0

2. F. Laux, “The Typed Graph Model”, DBKDA 2020 : The Twelfth

International Conference on Advances in Databases,

Knowledge, and Data Applications, IARIA, Sept 2020, pp. 13-

19, ISSN: 2308-4332, ISBN: 978-1-61208-790-0

3. M. Crowe, and F. Laux, “Database Technology Evolution”,

IARIA International Journal on Advanced is Software, vol 15 (3-

4) 2022, pp. 224-234, ISSN: 1942-2628

24

	Slide 1: Graph Data Models
	Slide 2: Malcolm Crowe University of the West of Scotland Email: malcolm.crowe@uws.ac.uk
	Slide 3: Prof. Dr. Fritz Laux (Retired), Reutlingen University Email: fritz.laux@reutlingen-university.de
	Slide 4: Plan of this presentation
	Slide 5: The Typed Graph Model
	Slide 6: Reasons to add SQL support
	Slide 7: An example: graph creation
	Slide 8: Schema Implementation
	Slide 9: A graph query
	Slide 10: Graph definition
	Slide 11: An example graph creation
	Slide 12: What the DBMS does
	Slide 13: Using SQL to define graphs
	Slide 14: Using MATCH
	Slide 15: A MATCH example
	Slide 16: Integrating MATCH and SQL
	Slide 17: Extra work done by the DBMS
	Slide 18: Predefining Graph types
	Slide 19: Transforming types
	Slide 20: Extending node types
	Slide 21: Friends of Friends
	Slide 22: Symmetric edges
	Slide 23: Conclusions
	Slide 24: References

