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Plan of this presentation

 The Typed Graph Model TGM (review)

 TGM and relational data

Why a combined approach?

Graph Modeling approach:

Creating a TGM by instances

And using MATCH to query its contents

RDBMS version

Creating and modifying using SQL

Current status and conclusions

 The Typed Graph Model
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The Typed Graph Model
 A typed graph schema is a tuple TGS=(NS,ES,ϱ,T,τ,C) where: 

 NS is the set of named (labeled) objects (nodes) n with 
properties of data type t:=(l,d)∈ T, where l is the label and d
the data type definition.

 ES is the set of named (labeled) edges e with a structured 
property p:=(l,d)∈ T, where l is the label and d the data type 
definition.

 ϱ is a function that associates each edge e to a pair of object 
sets (O,A), i. e., ϱ(e):=(Oe,Ae) with Oe, Ae ∈℘(NS). Oe is called 
the tail and Ae is called the head of an edge e. 

 τ is a function that assigns for each node n of an edge e a pair 
of positive integers (in,kn), i. e., τe(n):=(in,kn) with in ∈N0 and kn∈N. 
The function τ defines the min-max multiplicity of an edge 
connection. If the min-value in is 0 then the connection is 
optional. 

 C is a set of integrity constraints, which the graph database 
must obey. 

 Why RDBMS support
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Reasons to add SQL support

 The SQL programming model is well 

known

Most organisations have an RDBMS so 

it avoids having a separate product 

and support team

SQL queries can process graph data

Graph methods can be used for SQL 

data

 An example
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An example: graph creation
CREATE

(Joe:Customer {"Name":'Joe Edwards', 
Address:'10 Station Rd.'}),

(Joe)-[:Ordered {"Date":date'22/11/2002'} ]-> 
(Ord201:"Order")-[:Item {Qty: 5}]-> 
("16/50x100" : Woodscrew : Product),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm" : 
Wallplug: Product),

(Ord201)-[:Item {Qty: 1}]->("500ml" : 
Rubberglue : Product)

 Schema implementation
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Schema Implementation
 The TGM can be implemented in a relational 

DBMS as follows:

 Each node type and edge type defines a base 
table, whose rows are the node and edge 
instances

 There is a predefined primary key ID for both 
nodes and edges, which is an autokey

 The relationship of edges to nodes is as two 
predefined foreign keys LEAVING and ARRIVING 
in each edge table

 Node and edge properties are columns in the 
node and edge types

 We support subtypes for edge types

 A graph query
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A graph query

MATCH (_)-[:Item {Qty:_Q}]-> (_Y:_T) 
where Q>4

 Graph definition
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Graph definition
 If a graph is entered as in Neo4j by giving node and 

edge instances, the graph and edge types are 
incrementally inferred by the DBMS engine

 Nodes (..) and Edges (..)–[..]->(..) (..)<-[..]-(..) can be 
strung together, so a graph can be constructed by 
CREATE and a comma-separated list of instances

 Nodes and edges can be introduced id:label with 
properties in JSON notation

(Joe:Customer {Address:'10 Station Rd'})

 And similarly for edges

 Nodes can be later referenced using their ID

(Joe)

 The properties of a node or edge once defined can only 
be changed using SQL

 Graph creation again
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An example graph creation
CREATE

(Joe:Customer {"Name":'Joe Edwards', 
Address:'10 Station Rd.'}),

(Joe)-[:Ordered {"Date":date'22/11/2002'} ]-> 
(Ord201:"Order")-[:Item {Qty: 5}]-> 
("16/50x100" : Woodscrew : Product),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm" : 
Wallplug: Product),

(Ord201)-[:Item {Qty: 1}]->("500ml" : 
Rubberglue : Product)

 What the DBMS does
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What the DBMS does
CREATE TYPE CUSTOMER AS ("Name" char, ADDRESS char) NodeType

INSERT INTO CUSTOMER VALUES('JOE','Joe Edwards','10 Station 
Rd.')

CREATE TYPE "Order" NodeType

INSERT INTO "Order" VALUES('ORD201')

CREATE TYPE ORDERED as ("Date" date) EdgeType (CUSTOMER, 
"Order")

INSERT INTO ORDERED VALUES ('554','JOE','ORD201',date'2002-11-
22')

CREATE TYPE PRODUCT NodeType

CREATE TYPE WOODSCREW UNDER PRODUCT 

INSERT INTO WOODSCREW VALUES ('16/8x100’)

CREATE TYPE ITEM as (QTY int) EdgeType("Order",PRODUCT)

 INSERT INTO ITEM VALUES('1004','ORD201','16/8x100',5)

And so on. Also, we need index constraints (not illustrated)

 Using SQL for definition
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Using SQL to define graphs
 Node and edge types can be created and 

modified using CREATE TYPE and ALTER TYPE 
by adding the metadata NODETYPE or 
EDGETYPE(leaving,arriving)

 If N is a node type, INSERT into N works, as 
does UPDATE and DELETE, and similarly for 
edge types

 SELECT from node and edge types works

 A good strategy is to predefine data types 
using SQL and then use CREATE to build the 
graph

Using MATCH
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Using MATCH
 The Neo4j MATCH statement is available

MATCH graph [where] [statement]

 The graph part is as in CREATE, except that  dummy 
identifiers can be used for nodes and edges, 
preceded by _

 The result of MATCH is a table of possible values for 
these identifiers such that the graph fragment is 
found in the database

 Subject to the where condition if any

 The optional statement says what is to be done with 
these values, otherwise they are returned like in 
SELECT

 We can also use MATCH as a source of data for 
SELECT and INSERT

 An example
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A MATCH example

SQL> match (_)-[:Item {Qty:_Q}]-
>(_Y:_T) where Q>4



16

Integrating MATCH and SQL

Match can be used as a query (as in 

the last slide)

Match can be used as a subquery for 

predicates etc (not yet for joins)

Match can supply rows to be inserted 

in another table

Insert into T (MATCH ..)

 Extra work done by the DBMS
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Extra work done by the DBMS

Node and Edge ids need to be unique 

so the DBMS has an index for this

 The DBMS also keeps a list of the 

connected graphs to speed up 

searching

MATCH statements address the entire 

database

 Conclusions
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Predefining Graph types

create type student as (matric char) 

nodetype

 insert into student values 

('Fred','22/456')

 Subtypes
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Transforming types

create type person nodetype

alter type student set under person
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Extending node types

create type staff under person as (title 

char)

 insert into staff values ('Anne','Prof')

 select *,specifictype() from person
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Friends of Friends
create type friend 
edgetype(person,person)

[create trigger sym after insert on 
friend referencing new as nr for each 
row 

if not exists (select id from friend 
where leaving=nr.arriving and 
arriving=nr.leaving)

then insert into 
friend(leaving,arriving) values 
(nr.arriving,nr.leaving) end if]
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Symmetric edges

insert into person 
values('Joe'),('Mary’)

insert into friend(leaving,arriving) 
values('Joe','Mary'),('Mary','Fred')

select id from friend where 
leaving='Fred'
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Conclusions

 This merging of TGM with relational 

technology allows graph oriented 

data manipulation and queries

Some realistic examples of the 

approach would be nice

Extra graph-oriented syntax may be 

helpful, and metadata for multiplicity

 There is a potential for supporting 

interactive data modeling

 References
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