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Plan of this presentation

 The Typed Graph Model TGM (review)

 TGM and relational data

Why a combined approach?

Graph Modeling approach:

Creating a TGM by instances

And using MATCH to query its contents

RDBMS version

Creating and modifying using SQL

Current status and conclusions

 The Typed Graph Model
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The Typed Graph Model
 A typed graph schema is a tuple TGS=(NS,ES,ϱ,T,τ,C) where: 

 NS is the set of named (labeled) objects (nodes) n with 
properties of data type t:=(l,d)∈ T, where l is the label and d
the data type definition.

 ES is the set of named (labeled) edges e with a structured 
property p:=(l,d)∈ T, where l is the label and d the data type 
definition.

 ϱ is a function that associates each edge e to a pair of object 
sets (O,A), i. e., ϱ(e):=(Oe,Ae) with Oe, Ae ∈℘(NS). Oe is called 
the tail and Ae is called the head of an edge e. 

 τ is a function that assigns for each node n of an edge e a pair 
of positive integers (in,kn), i. e., τe(n):=(in,kn) with in ∈N0 and kn∈N. 
The function τ defines the min-max multiplicity of an edge 
connection. If the min-value in is 0 then the connection is 
optional. 

 C is a set of integrity constraints, which the graph database 
must obey. 

 Why RDBMS support
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Reasons to add SQL support

 The SQL programming model is well 

known

Most organisations have an RDBMS so 

it avoids having a separate product 

and support team

SQL queries can process graph data

Graph methods can be used for SQL 

data

 An example
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An example: graph creation
CREATE

(Joe:Customer {"Name":'Joe Edwards', 
Address:'10 Station Rd.'}),

(Joe)-[:Ordered {"Date":date'22/11/2002'} ]-> 
(Ord201:"Order")-[:Item {Qty: 5}]-> 
("16/50x100" : Woodscrew : Product),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm" : 
Wallplug: Product),

(Ord201)-[:Item {Qty: 1}]->("500ml" : 
Rubberglue : Product)

 Schema implementation
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Schema Implementation
 The TGM can be implemented in a relational 

DBMS as follows:

 Each node type and edge type defines a base 
table, whose rows are the node and edge 
instances

 There is a predefined primary key ID for both 
nodes and edges, which is an autokey

 The relationship of edges to nodes is as two 
predefined foreign keys LEAVING and ARRIVING 
in each edge table

 Node and edge properties are columns in the 
node and edge types

 We support subtypes for edge types

 A graph query
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A graph query

MATCH (_)-[:Item {Qty:_Q}]-> (_Y:_T) 
where Q>4

 Graph definition
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Graph definition
 If a graph is entered as in Neo4j by giving node and 

edge instances, the graph and edge types are 
incrementally inferred by the DBMS engine

 Nodes (..) and Edges (..)–[..]->(..) (..)<-[..]-(..) can be 
strung together, so a graph can be constructed by 
CREATE and a comma-separated list of instances

 Nodes and edges can be introduced id:label with 
properties in JSON notation

(Joe:Customer {Address:'10 Station Rd'})

 And similarly for edges

 Nodes can be later referenced using their ID

(Joe)

 The properties of a node or edge once defined can only 
be changed using SQL

 Graph creation again
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An example graph creation
CREATE

(Joe:Customer {"Name":'Joe Edwards', 
Address:'10 Station Rd.'}),

(Joe)-[:Ordered {"Date":date'22/11/2002'} ]-> 
(Ord201:"Order")-[:Item {Qty: 5}]-> 
("16/50x100" : Woodscrew : Product),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm" : 
Wallplug: Product),

(Ord201)-[:Item {Qty: 1}]->("500ml" : 
Rubberglue : Product)

 What the DBMS does
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What the DBMS does
CREATE TYPE CUSTOMER AS ("Name" char, ADDRESS char) NodeType

INSERT INTO CUSTOMER VALUES('JOE','Joe Edwards','10 Station 
Rd.')

CREATE TYPE "Order" NodeType

INSERT INTO "Order" VALUES('ORD201')

CREATE TYPE ORDERED as ("Date" date) EdgeType (CUSTOMER, 
"Order")

INSERT INTO ORDERED VALUES ('554','JOE','ORD201',date'2002-11-
22')

CREATE TYPE PRODUCT NodeType

CREATE TYPE WOODSCREW UNDER PRODUCT 

INSERT INTO WOODSCREW VALUES ('16/8x100’)

CREATE TYPE ITEM as (QTY int) EdgeType("Order",PRODUCT)

 INSERT INTO ITEM VALUES('1004','ORD201','16/8x100',5)

And so on. Also, we need index constraints (not illustrated)

 Using SQL for definition
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Using SQL to define graphs
 Node and edge types can be created and 

modified using CREATE TYPE and ALTER TYPE 
by adding the metadata NODETYPE or 
EDGETYPE(leaving,arriving)

 If N is a node type, INSERT into N works, as 
does UPDATE and DELETE, and similarly for 
edge types

 SELECT from node and edge types works

 A good strategy is to predefine data types 
using SQL and then use CREATE to build the 
graph

Using MATCH
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Using MATCH
 The Neo4j MATCH statement is available

MATCH graph [where] [statement]

 The graph part is as in CREATE, except that  dummy 
identifiers can be used for nodes and edges, 
preceded by _

 The result of MATCH is a table of possible values for 
these identifiers such that the graph fragment is 
found in the database

 Subject to the where condition if any

 The optional statement says what is to be done with 
these values, otherwise they are returned like in 
SELECT

 We can also use MATCH as a source of data for 
SELECT and INSERT

 An example
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A MATCH example

SQL> match (_)-[:Item {Qty:_Q}]-
>(_Y:_T) where Q>4
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Integrating MATCH and SQL

Match can be used as a query (as in 

the last slide)

Match can be used as a subquery for 

predicates etc (not yet for joins)

Match can supply rows to be inserted 

in another table

Insert into T (MATCH ..)

 Extra work done by the DBMS
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Extra work done by the DBMS

Node and Edge ids need to be unique 

so the DBMS has an index for this

 The DBMS also keeps a list of the 

connected graphs to speed up 

searching

MATCH statements address the entire 

database

 Conclusions
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Predefining Graph types

create type student as (matric char) 

nodetype

 insert into student values 

('Fred','22/456')

 Subtypes
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Transforming types

create type person nodetype

alter type student set under person
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Extending node types

create type staff under person as (title 

char)

 insert into staff values ('Anne','Prof')

 select *,specifictype() from person
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Friends of Friends
create type friend 
edgetype(person,person)

[create trigger sym after insert on 
friend referencing new as nr for each 
row 

if not exists (select id from friend 
where leaving=nr.arriving and 
arriving=nr.leaving)

then insert into 
friend(leaving,arriving) values 
(nr.arriving,nr.leaving) end if]
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Symmetric edges

insert into person 
values('Joe'),('Mary’)

insert into friend(leaving,arriving) 
values('Joe','Mary'),('Mary','Fred')

select id from friend where 
leaving='Fred'
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Conclusions

 This merging of TGM with relational 

technology allows graph oriented 

data manipulation and queries

Some realistic examples of the 

approach would be nice

Extra graph-oriented syntax may be 

helpful, and metadata for multiplicity

 There is a potential for supporting 

interactive data modeling

 References
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