
1

Graph Data Models
MALCOLM CROWE, FRITZ LAUX

DBKDA 2023

 Malcolm Crowe is an Emeritus Professor at the University of the West of Scotland,
where he worked from 1972 (when it was Paisley College of Technology) until
2018.

 He gained a D.Phil. in Mathematics at the University of Oxford in 1979.

 He was appointed head of the Department of Computing in 1985. His funded
research projects before 2001 were on Programming Languages and Cooperative
Work.

 Since 2001 he has worked steadily on PyrrhoDBMS to explore optimistic
technologies for relational databases and this work led to involvement in DBTech,
and a series of papers and other contributions at IARIA conferences with Fritz
Laux, Martti Laiho, and others.

 Prof. Crowe has recently been appointed an IARIA Fellow.

Malcolm Crowe
University of the West of Scotland

Email: malcolm.crowe@uws.ac.uk

2

 Prof. Dr. Fritz Laux was professor (now emeritus) for Database and Information Systems at

Reutlingen University from 1986 - 2015. He holds an MSc (Diplom) and PhD (Dr. rer. nat.) in

Mathematics.

 His current research interests include

• Information modeling and data integration

• Transaction management and optimistic concurrency control

• Business intelligence and knowledge discovery

 He contributed papers to DBKDA and PATTERNS conferences that received DBKDA 2009 and

DBKDA 2010 Best Paper Awards. He is a panellist, keynote speaker, and member of the

DBKDA advisory board.

 Prof. Laux is a founding member of DBTech.net (http://www.dbtechnet.org/), an initiative of

European universities and IT-companies to set up a transnational collaboration scheme for

Database teaching. Together with colleagues from 5 European countries he has conducted

projects supported by the European Union on state-of-the-art database teaching.

 He is a member of the ACM and the German Computer Society (Gesellschaft für Informatik).

Prof. Dr. Fritz Laux
(Retired), Reutlingen University
Email: fritz.laux@reutlingen-university.de

3

https://eu-west-1.protection.sophos.com/?d=dbtechnet.org&u=aHR0cDovL3d3dy5kYnRlY2huZXQub3JnLw==&i=NjA2MmU2NGYwYjBjYmUwZTZlMzUzNGNj&t=NmFLZXNtMDU2NVI5RytLeUp3Z2tzaHRvb1YweURzcG9wWWEyRGVEQ0xoYz0=&h=35c90459daf54f4db46e5a2af80b7f29)

4

Plan of this presentation

 The Typed Graph Model TGM (review)

 TGM and relational data

Why a combined approach?

Graph Modeling approach:

Creating a TGM by instances

And using MATCH to query its contents

RDBMS version

Creating and modifying using SQL

Current status and conclusions

 The Typed Graph Model

5

The Typed Graph Model
 A typed graph schema is a tuple TGS=(NS,ES,ϱ,T,τ,C) where:

 NS is the set of named (labeled) objects (nodes) n with
properties of data type t:=(l,d)∈ T, where l is the label and d
the data type definition.

 ES is the set of named (labeled) edges e with a structured
property p:=(l,d)∈ T, where l is the label and d the data type
definition.

 ϱ is a function that associates each edge e to a pair of object
sets (O,A), i. e., ϱ(e):=(Oe,Ae) with Oe, Ae ∈℘(NS). Oe is called
the tail and Ae is called the head of an edge e.

 τ is a function that assigns for each node n of an edge e a pair
of positive integers (in,kn), i. e., τe(n):=(in,kn) with in ∈N0 and kn∈N.
The function τ defines the min-max multiplicity of an edge
connection. If the min-value in is 0 then the connection is
optional.

 C is a set of integrity constraints, which the graph database
must obey.

 Why RDBMS support

6

Reasons to add SQL support

 The SQL programming model is well

known

Most organisations have an RDBMS so

it avoids having a separate product

and support team

SQL queries can process graph data

Graph methods can be used for SQL

data

 An example

7

An example: graph creation
CREATE

(Joe:Customer {"Name":'Joe Edwards',
Address:'10 Station Rd.'}),

(Joe)-[:Ordered {"Date":date'22/11/2002'}]->
(Ord201:"Order")-[:Item {Qty: 5}]->
("16/50x100" : Woodscrew : Product),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm" :
Wallplug: Product),

(Ord201)-[:Item {Qty: 1}]->("500ml" :
Rubberglue : Product)

 Schema implementation

8

Schema Implementation
 The TGM can be implemented in a relational

DBMS as follows:

 Each node type and edge type defines a base
table, whose rows are the node and edge
instances

 There is a predefined primary key ID for both
nodes and edges, which is an autokey

 The relationship of edges to nodes is as two
predefined foreign keys LEAVING and ARRIVING
in each edge table

 Node and edge properties are columns in the
node and edge types

 We support subtypes for edge types

 A graph query

9

A graph query

MATCH (_)-[:Item {Qty:_Q}]-> (_Y:_T)
where Q>4

 Graph definition

10

Graph definition
 If a graph is entered as in Neo4j by giving node and

edge instances, the graph and edge types are
incrementally inferred by the DBMS engine

 Nodes (..) and Edges (..)–[..]->(..) (..)<-[..]-(..) can be
strung together, so a graph can be constructed by
CREATE and a comma-separated list of instances

 Nodes and edges can be introduced id:label with
properties in JSON notation

(Joe:Customer {Address:'10 Station Rd'})

 And similarly for edges

 Nodes can be later referenced using their ID

(Joe)

 The properties of a node or edge once defined can only
be changed using SQL

 Graph creation again

11

An example graph creation
CREATE

(Joe:Customer {"Name":'Joe Edwards',
Address:'10 Station Rd.'}),

(Joe)-[:Ordered {"Date":date'22/11/2002'}]->
(Ord201:"Order")-[:Item {Qty: 5}]->
("16/50x100" : Woodscrew : Product),

(Ord201)-[:Item {Qty: 5}]->("Fiber 12cm" :
Wallplug: Product),

(Ord201)-[:Item {Qty: 1}]->("500ml" :
Rubberglue : Product)

 What the DBMS does

12

What the DBMS does
CREATE TYPE CUSTOMER AS ("Name" char, ADDRESS char) NodeType

INSERT INTO CUSTOMER VALUES('JOE','Joe Edwards','10 Station
Rd.')

CREATE TYPE "Order" NodeType

INSERT INTO "Order" VALUES('ORD201')

CREATE TYPE ORDERED as ("Date" date) EdgeType (CUSTOMER,
"Order")

INSERT INTO ORDERED VALUES ('554','JOE','ORD201',date'2002-11-
22')

CREATE TYPE PRODUCT NodeType

CREATE TYPE WOODSCREW UNDER PRODUCT

INSERT INTO WOODSCREW VALUES ('16/8x100’)

CREATE TYPE ITEM as (QTY int) EdgeType("Order",PRODUCT)

 INSERT INTO ITEM VALUES('1004','ORD201','16/8x100',5)

And so on. Also, we need index constraints (not illustrated)

 Using SQL for definition

13

Using SQL to define graphs
 Node and edge types can be created and

modified using CREATE TYPE and ALTER TYPE
by adding the metadata NODETYPE or
EDGETYPE(leaving,arriving)

 If N is a node type, INSERT into N works, as
does UPDATE and DELETE, and similarly for
edge types

 SELECT from node and edge types works

 A good strategy is to predefine data types
using SQL and then use CREATE to build the
graph

Using MATCH

14

Using MATCH
 The Neo4j MATCH statement is available

MATCH graph [where] [statement]

 The graph part is as in CREATE, except that dummy
identifiers can be used for nodes and edges,
preceded by _

 The result of MATCH is a table of possible values for
these identifiers such that the graph fragment is
found in the database

 Subject to the where condition if any

 The optional statement says what is to be done with
these values, otherwise they are returned like in
SELECT

 We can also use MATCH as a source of data for
SELECT and INSERT

 An example

15

A MATCH example

SQL> match (_)-[:Item {Qty:_Q}]-
>(_Y:_T) where Q>4

16

Integrating MATCH and SQL

Match can be used as a query (as in

the last slide)

Match can be used as a subquery for

predicates etc (not yet for joins)

Match can supply rows to be inserted

in another table

Insert into T (MATCH ..)

 Extra work done by the DBMS

17

Extra work done by the DBMS

Node and Edge ids need to be unique

so the DBMS has an index for this

 The DBMS also keeps a list of the

connected graphs to speed up

searching

MATCH statements address the entire

database

 Conclusions

18

Predefining Graph types

create type student as (matric char)

nodetype

 insert into student values

('Fred','22/456')

 Subtypes

19

Transforming types

create type person nodetype

alter type student set under person

20

Extending node types

create type staff under person as (title

char)

 insert into staff values ('Anne','Prof')

 select *,specifictype() from person

21

Friends of Friends
create type friend
edgetype(person,person)

[create trigger sym after insert on
friend referencing new as nr for each
row

if not exists (select id from friend
where leaving=nr.arriving and
arriving=nr.leaving)

then insert into
friend(leaving,arriving) values
(nr.arriving,nr.leaving) end if]

22

Symmetric edges

insert into person
values('Joe'),('Mary’)

insert into friend(leaving,arriving)
values('Joe','Mary'),('Mary','Fred')

select id from friend where
leaving='Fred'

23

Conclusions

 This merging of TGM with relational

technology allows graph oriented

data manipulation and queries

Some realistic examples of the

approach would be nice

Extra graph-oriented syntax may be

helpful, and metadata for multiplicity

 There is a potential for supporting

interactive data modeling

 References

24

References
1. F. Laux and M. Crowe, Information Integration using the Typed

Graph Model. DBKDA 2021: The Thirteenth International
Conference on Advances in Databases, Knowledge, and

Data Applications, IARIA, May 2021, pp 7-14, ISSN 2308-4332,

ISBN 978-1-61208-857-0

2. F. Laux, “The Typed Graph Model”, DBKDA 2020 : The Twelfth

International Conference on Advances in Databases,

Knowledge, and Data Applications, IARIA, Sept 2020, pp. 13-

19, ISSN: 2308-4332, ISBN: 978-1-61208-790-0

3. M. Crowe, and F. Laux, “Database Technology Evolution”,

IARIA International Journal on Advanced is Software, vol 15 (3-

4) 2022, pp. 224-234, ISSN: 1942-2628

24

	Slide 1: Graph Data Models
	Slide 2: Malcolm Crowe University of the West of Scotland Email: malcolm.crowe@uws.ac.uk
	Slide 3: Prof. Dr. Fritz Laux (Retired), Reutlingen University Email: fritz.laux@reutlingen-university.de
	Slide 4: Plan of this presentation
	Slide 5: The Typed Graph Model
	Slide 6: Reasons to add SQL support
	Slide 7: An example: graph creation
	Slide 8: Schema Implementation
	Slide 9: A graph query
	Slide 10: Graph definition
	Slide 11: An example graph creation
	Slide 12: What the DBMS does
	Slide 13: Using SQL to define graphs
	Slide 14: Using MATCH
	Slide 15: A MATCH example
	Slide 16: Integrating MATCH and SQL
	Slide 17: Extra work done by the DBMS
	Slide 18: Predefining Graph types
	Slide 19: Transforming types
	Slide 20: Extending node types
	Slide 21: Friends of Friends
	Slide 22: Symmetric edges
	Slide 23: Conclusions
	Slide 24: References

