A Hypergraph Approach for Logic-based Abduction

Qiancheng Ouyang, Tianjiao Dai, Yue Ma

Laboratoire Interdisciplinaire des Sciences du Numérique CNRS - Université Paris-Saclay, Orsay 91405, France {oyqc,dai,ma}@lisn.fr

About us

Tianjiao DAI

I am a PhD student at LISN, Université Paris-Saclay. My research interests are graph theory and its applications, including knowledge representation and reasoning.

Qiancheng Ouyang

I am a PhD student at LISN, Université Paris-Saclay. My research interests are extremal graph theory and its applications, including knowledge representation and reasoning.

Yue Ma

I am an associate professor at Université Paris-Saclay, France. My research interests are situated within the domain of knowledge representation and its applications, concerned three aspects: Knowledge Representation (the logic approach for Artificial Intelligence), Semantic Web (the next generation of the web), and Semantic methods for heterogenous data processing.

What is an ontology?

Ontologies consist of axioms that state the relationship of different concepts and relationships over a specific domain.

A simple \mathcal{EL} -ontology

Concept names: $\{A, B, \dots\}$ Definition A normalized \mathcal{EL} -ontology \mathcal{O} is a finite set of axioms of the form: $A \sqsubseteq B_1 \sqcap \dots \sqcap B_n, \qquad B_1 \sqcap \dots \sqcap B_n \sqsubseteq A.$

 $peopleWithDiploma \sqsubseteq doctor$ $peopleHasPaper \sqsubseteq researcher$ $doctor \sqcap employeeWithUniversityChair \sqsubseteq professor$

Classical abduction problem consists of three parts:

- a given background knowledge (i.e., an existing ontology O);
- a set of hypotheses (i.e., a set of axioms \mathcal{H});
- a given conclusion (i.e., a single axiom α),

satisfying:

$$\mathcal{O} \not\models \alpha, \mathcal{O} \cup \mathcal{H} \models \alpha.$$

We also take into account a user's interests represented by a set of concepts $\boldsymbol{\Sigma}.$

Abduction problem

An abduction problem is a tuple $\langle \mathcal{O}, \Sigma, A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B \rangle$, where $\Sigma = \{A', B', \cdots\}$ is a set of concept names. A solution of this problem is a minimal ontology

$$\mathcal{H} = \{A'_1 \sqcap \dots \sqcap A'_n \sqsubseteq B' \mid A'_i, B' \in \Sigma, n \ge 0\}$$

such that $\mathcal{O} \cup \mathcal{H} \models A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B$. A solution \mathcal{H} is called a hypothesis with respect to Σ .

Our abduction problem

Example

$peopleWithDiploma \sqsubseteq doctor$ $peopleHasPaper \sqsubseteq researcher$ $doctor \sqcap employeeWithUniversityChair \sqsubseteq professor$

• \mathcal{O}_0 can not derive α_0 :

 $doctor \sqcap employeeWithUniversityChair \sqsubseteq researcher.$

• Consider $\Sigma_0 = \{ professor, peopleHasPaper \}$ and a hypothesis $\mathcal{H}_0 = \{ professor \sqsubseteq peopleHasPaper \}$.

• Then,
$$\mathcal{O}_0 \cup \mathcal{H}_0 \models \alpha_0$$
.

• Therefore, \mathcal{H}_0 is a solution of the abduction problem $\mathcal{A}_0 = \langle \mathcal{O}_0, \Sigma_0, \alpha_0 \rangle.$

- Complexity of abduction over \mathcal{EL} and their application to repairing ontologies;
- \bullet Abduction over \mathcal{EL} by translation to first-order logic;
- Forgetting-based or signature-based abduction over expressive ontologies.

In this presentation, we propose a new solution of abduction over a special \mathcal{EL} -ontology (free of role restrictions), based on a hypergraph representation of ontologies.

Hypergraph

Hypergraph

A (directed) hypergraph $\mathcal{H} = \{\mathcal{V}, \mathcal{E}\}$ consists of a node set $\mathcal{V} = \{v_1, v_2, \dots, v_n\}$ and a hyperedge set $\mathcal{E} = \{e_1, e_2 \dots, e_m\}$, where $e_i = \langle T(e_i), f(e_i) \rangle$ with $T(e_i) \subseteq \mathcal{V}$ being a subset and $f(e_i) \in \mathcal{V}$ being a node.

Definition

Given an ontology \mathcal{O} , we define a hypergraph $H_{\mathcal{O}} = (\mathcal{N}_h, \mathcal{E}_h)$, where $\mathcal{N}_h := \{N_A \mid A \in \mathsf{N}_{\mathsf{C}}\}$ and

$$\mathcal{E}_h := \{\{N_{A_1}, \cdots, N_{A_n}\} \to N_A \mid A_1 \sqcap \cdots \sqcap A_n \sqsubseteq A \in \mathcal{O}\}$$

Q. Ouyang, T. Dai, Y. Ma, Université Paris-Saclay

A Hypergraph Approach for Logic-based Abduction

Hyperpath

Hyperpath

Given a hypergraph $\mathcal{H} = \{\mathcal{V}, \mathcal{E}\}$, assume $S \subseteq \mathcal{V}$ and $v \in \mathcal{V}$. A hyperpath from S to v is a sequence $h = [e_1, e_2, \cdots, e_n]$ of hyperedges such that

- $f(e_n) = \{v\};$
- for $i = 1, \dots, n, T(e_i) \subseteq S \cup \{f(e_1), \dots, f(e_{i-1})\};$
- for $i = 1, \dots, n$, $f(e_i) \in \bigcup_{i < j \le n} T(e_j)$.
 - N_1 : peopleWithDiploma
 - N_2 : doctor

• A hyperpath h from $\{N_2, N_5\}$ to N_4 : $h = [\{N_2, N_5\} \rightarrow \{N_6\}, \{N_6\} \rightarrow N_3, \{N_3\} \rightarrow N_4]$

Q. Ouyang, T. Dai, Y. Ma, Université Paris-Saclay

A Hypergraph Approach for Logic-based Abduction

Our result

Theorem

Given an ontology \mathcal{O} and its associated hypergraph $H_{\mathcal{O}}$, an ontology \mathcal{H} is a (minimal) solution to the abduction problem $\langle \mathcal{O}, \Sigma, A_1 \sqcap \cdots \sqcap A_n \sqsubseteq B \rangle$ iff $H_{\mathcal{H}}$ is a (minimal) hypergraph s.t.

- There is a hyperpath from N_{A_1}, \cdots, N_{A_n} to N_B in $H_{\mathcal{O}} \cup H_{\mathcal{H}}$;
- And all nodes in $H_{\mathcal{H}}$ are of the form $N_A, A \in \Sigma$.

To find an $H_{\mathcal{H}}$ such that there exists a hyperpath from $\{N_2, N_5\}$ to N_4 in $H_{\mathcal{O}_0} \cup H_{\mathcal{H}}$. The hypergraph $H_{\mathcal{H}}$ consists of a single edge $\{N_6\} \to N_3$ satisfying the requirement.

GOAL: To find a hyperpath from S to v in $H_{\mathcal{O}_0} \cup H_{\mathcal{H}}$.

- $\Sigma \setminus V = \{v_1, v_2, v_3\}$
- Choose any 3 hyper-edges $\mathcal{E}' = \{e_1, e_2, e_3\}$ where $T(e_i) \subset \Sigma \cap V$ and $f(e_i) = v_i$ for i = 1, 2, 3.
- if $v \notin Span(\mathcal{V}, \mathcal{E} \cup \mathcal{E}', V \cup \Sigma)$, then non-existence.
- Minimize *E'* (check if there exists *e* ∈ *E'* such that *E'* − *e* satisfies until we get a minimal size).

Thanks for your attention!