

# The Internet of Things system combined with the cloud platform is applied to the data collection and analysis of the elderly home life style

Authors : Bing-Hong Jiang, Jung-Tung Huang

Presenter : Bing-Hong Jiang

Affiliation : Graduate student in Master Program of Mechatronic

Engineering of National Taipei University of Technology

Email : t110408015@ntut.org.tw





### Short resume





Bing-Hong Jiang

t110408015@ntut.org.tw

#### **Education**

- ➤ M.S Master Program of Mechatronic Engineering, National Taipei University of Technology
- B.S. Department of Mechanical Engineering, National Taipei University of Technology, 2020

#### Research

- Big data analysis
- > IoT
- Cloud Service

### Outline



- > Introduction
- > System Architecture
- Method
- > Result and Discussion
- > Conclusion
- > Future work
- > Appendice

### Introduction



➤ This study combines Google Cloud Platform (GCP), Google Assistant, Firebase and MongoDB for data streaming and storage through smart bracelets, smart amulets (9-axis IMU), and smart speakers (Google Home Next Mini), and the collected data changes are displayed on the webpage immediately to form a home care internet of things system for the elderly. The experiment visited five groups of families for actual testing, with ten people experimenting for one week, all wearing the smart bracelet and the smart amulet at the same time.

## System Architecture



➤ IoT System Architecture Diagram

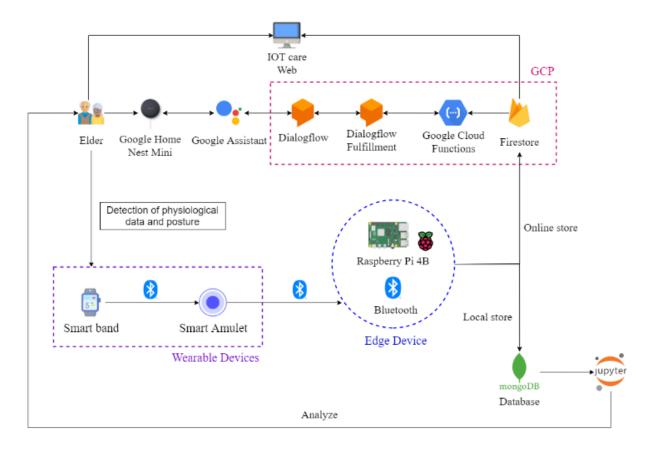



Figure 1.

## System Architecture



> Flowchart of active broadcasting by speaker

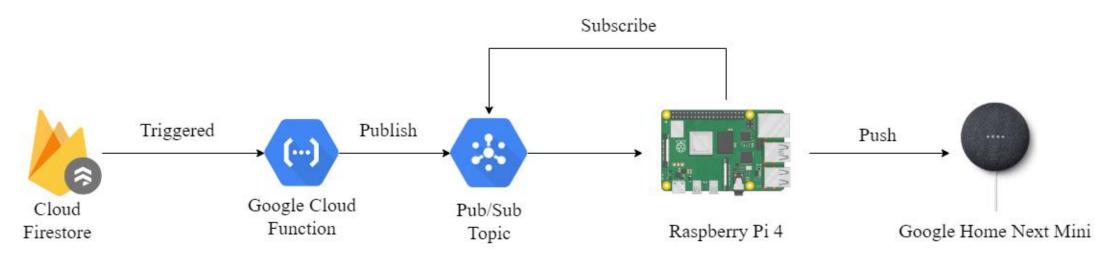



Figure 2.

## System Architecture



Devices used in IoT care systems

| Device                                      | Function                                                                                              | Advantage                                     |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| Smart Bracelet                              | Blood pressure, Step,<br>Mileage, Temperature, Heart<br>rate and Calorie                              | with bracelet protocol,<br>Cheap              |  |
| Smart Amulet<br>(9-axis IMU)                | Attitude, Motion, Height<br>monitoring, Fall monitoring,<br>Emergency alert and indoor<br>positioning | With 9-axis sensor, accurate identification   |  |
| Smart Speaker<br>(Google Home Nest<br>Mini) | Notifications, Conversations,<br>Sentence Collection and Care                                         | Google has a series of services and functions |  |
| Beacon                                      | Indoor positioning                                                                                    | Accurate positioning function                 |  |
| Edge Device<br>(Raspberry Pi 4B)            | Collect Bluetooth device data and store in database                                                   | Speed up data processing and response time    |  |

Table 1.

### Method



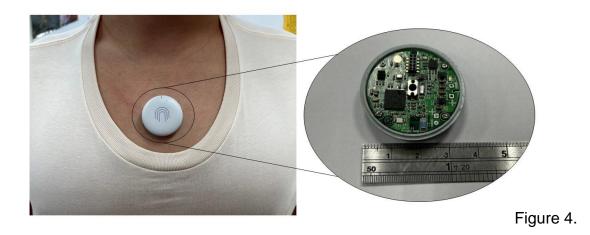
#### > Subjects

The subjects were 10 people, 5 elderly people aged 70 to 80 years and 5 young people aged 24 to 26 years, and the system was set up in 5 households. The height and weight of the elderly were as shown in Table 2, and the height values shown in Table 2 were measured without hunchback.

| Subjects<br>(Elder) | Height(c<br>m) | Weight<br>(kg) | Humpbacked | Illness & Injury                             |
|---------------------|----------------|----------------|------------|----------------------------------------------|
| Elder 1             | 158            | 62             | No         | Had ankle surgery                            |
| Elder 2             | 155            | 58             | Yes        | Bipolar disorder &<br>Effusion of knee joint |
| Elder 3             | 155            | 45             | Yes        | Had knee surgery                             |
| Elder 4             | 157            | 58             | Yes        | Back sprain                                  |
| Elder 5             | 168            | 65             | No         | None                                         |

Table 2.

### Method




- Physiological State Data and Daily Posture Collection
  During the experiment, the subjects will be asked to wear the smart bracelet and the smart amulet for 7 days. Except for washing, they would wear them during the rest of the time.
- > Experimental equipment wearing schematic diagram



**Smart Watch** 

Figure 3.



Smart Amulet

### Method



#### > Timed Up and Go Test (TUG)

The Timed Up and Go Test (TUG) frailty assessment standard was conducted to check the movement changes of the subject and to determine whether the subject had frailty symptoms. Time Up and Go Test uses the standard TUG protocol and starts from the center of the foot and goes forward 3m, using tape at the 3m mark and turning around the cross mark. The TUG experiment was conducted using a chair with no back rest.





➤ Physiological Information and Daily Posture Collection Results

The data collected during the experiment will be uploaded and stored to the cloud database through the edge device, and the current posture changes will be displayed through the webpage for the subjects to view in real time.

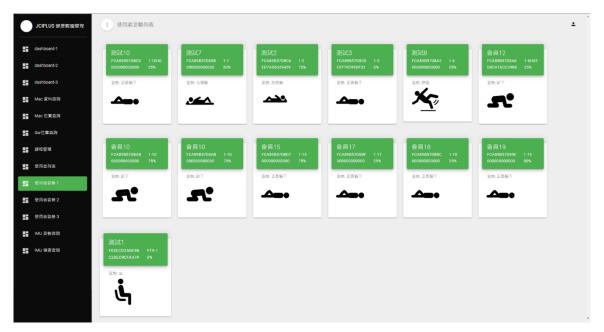
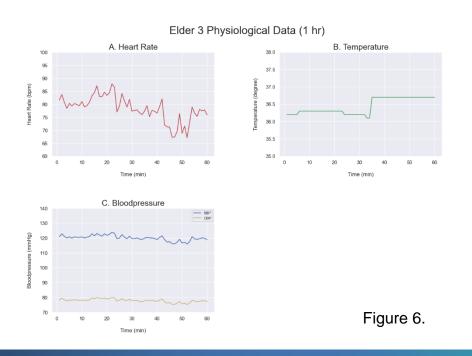




Figure 5.



> Physiological Information and Daily Posture Collection Results

The physiological data and postural changes collected daily were plotted for analysis. The graphs were used to clearly analyze the physiological data and postural distribution of the subjects during one hour at a point in time, as shown in Figure. 6 and 7.



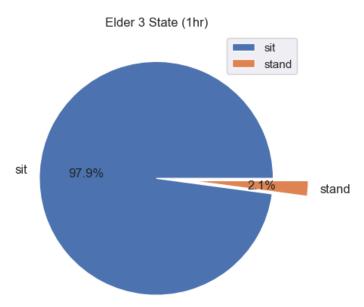



Figure 7.



- > Physiological Information and Daily Posture Collection Results
  - 1. Figure. 6C shows that the blood pressure changes during the first 30 minutes implied a trend of pre-hypertension. According to the criteria for hypertension published by the American Heart Association, a diastolic blood pressure between 120 mmHg and 129 mmHg and a systolic blood pressure below 80 mmHg are the criteria for prehypertension.
  - 2. The posture distribution in Figure. 7 showed a prolonged sedentary state, which was verified with the experimental activity records, and the subject was watching a movie at that time, which was presumed to be caused by the tension of the drama.



#### Daily Behavior Analysis

The results of the TUG experiment with the same conditions for young person 1 and elder 1 are shown in Figure. 8

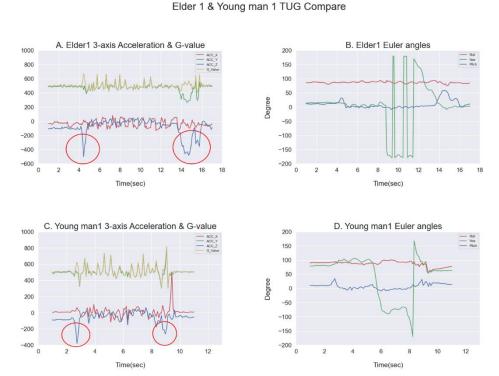


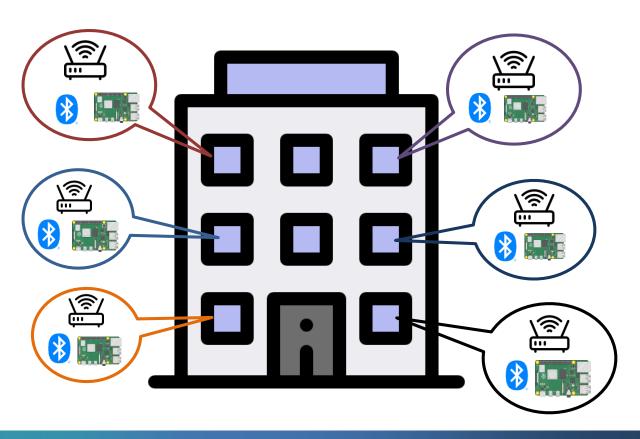

Figure 8.



#### Daily Behavior Analysis

- 1. From Figure. 8A and 8C for comparison of the difference in 3-axis acceleration changes, we can observe that the amplitude of G-value of young person 1 is larger than that of elder 1.
- 2. comparing the difference of Z-axis acceleration, the maximum amplitude of Z-axis acceleration reached -400 as shown in the red circles in Figure. 8A and 8C, indicating that elder 1 was leaning forward than young person 1 in getting up, which could be inferred from observing the experimental procedure that elder 1's leg muscles were relatively weak and needed to be guided to stand by body strength.
- 3. the TUG test time of elder 1 was greater than 12 seconds, and it is presumed that there may be a risk of falling.

### Conclusion




- ➤ More effective care for the elderly at home
- > Real-time display of physiological data of the elderly for easy viewing
- > Low equipment costs
- No discomfort when worn
- > Smart speakers help to solve the difficulties encountered by the elderly in their lives

#### Future work



- Access to more homes for experiments
  - 1. Expansion of experimental population
  - conduct more realistic and long-term experiments
  - Create a more comprehensive and complete personalized care system



## Appendice



#### > The American Heart Association

| BLOOD PRESSURE CATEGORY                               | SYSTOLIC mm Hg<br>(upper number) | and/or | DIASTOLIC mm Hg<br>(lower number) |
|-------------------------------------------------------|----------------------------------|--------|-----------------------------------|
| NORMAL                                                | LESS THAN 120                    | and    | LESS THAN 80                      |
| ELEVATED                                              | 120 – 129                        | and    | LESS THAN 80                      |
| HIGH BLOOD PRESSURE<br>(HYPERTENSION) STAGE 1         | 130 – 139                        | or     | 80 – 89                           |
| HIGH BLOOD PRESSURE<br>(HYPERTENSION) STAGE 2         | 140 OR HIGHER                    | or     | 90 OR HIGHER                      |
| HYPERTENSIVE CRISIS (consult your doctor immediately) | HIGHER THAN 180                  | and/or | HIGHER THAN 120                   |

Source: https://www.heart.org/en/health-topics/high-blood-pressure/understanding-blood-pressure-readings



# The Internet of Things system combined with the cloud platform is applied to the data collection and analysis of the elderly home life style

Authors : Bing-Hong Jiang, Jung-Tung Huang

Presenter : Bing-Hong Jiang

Affiliation : Graduate student in Master Program of Mechatronic

Engineering of National Taipei University of Technology

Email : t110408015@ntut.org.tw



