

A Practical Automated Transformation of Entity Relationship Models to Relational Models

Gregor Grambow and Simon Ruttmann Dept. of Computer Science - Aalen University Presented by: Gregor Grambow gregor.grambow@hs-aalen.de

Gregor Grambow

- Professor for modern database technologies and their application at Aalen University
 - Since 2020
- Industry experience
 - Various projects relating to big data, data processing, and process optimization
- Research projects
 - Different projects relating to process optimization in context of Industry 4.0
 - Applied data processing
 - Combination of different data processing technologies
- Research interests
 - Database modeling
 - Graph databases
 - Context processing
 - Process optimization

• ...

Table of Contents

- Introduction
- Related Work
- Definition of the ER model
- Transformation
 - Attributes
 - IsA structures
 - Weak types
 - Relationships
- Evaluation
- Conclusion

Introduction

Entity Relationship (ER) modeling

- Prevalent option for semantic data modeling
- Introduced in 1976 by Peter Chen
- Focus of active research for decades
- Conversion required for application in relational databases
 - Can be tedious and error-prone
 - Various approaches for standardized transformations have been proposed

An ER Diagram as proposed by Peter Chen [P. Chen, "The entity-relationship model—toward a unified view of data," ACM Trans. on DB Sys. vol. 1, no. 1, pp. 9-36, 1976.]

An ER Diagram used for schema modeling of current NoSQL systems [D. Bermbach, S. Müller, J. Eberhardt, and S. Tai "Informed Schema Design for Column Store-Based Database Services," IEEE 8th Int. Conf. on Service-Oriented Computing and Applications, 2015.]

4

Related Work

Scientific approaches

- High number of approaches
- Based on different sets of modeling elements
- Rather theoretic no application

Practical ER editor tools

- High number of tools
- Mostly not proper ER modeling
- No transformation of ER models to relational models
- > No practical applied transformation in place

Θ		D	
øpublic	4	public	
[] tenant	ŧ	B users	
🥖 id smallint		id integer inne character varying isemame character varyin	
eompany_tax_code charact			
er varying(14)			
period character varying(1		9	
created timestamp with tim		enteronel character varying	
e zone		(60)	
Θ			
public			
account_transfer			
/ id smallint			
account_transfer_code cha racter varying(32)			
transfer_order smallint			
from_account character var ying(32)			
to_account character varyi ng(32)			
transfer_side smallint			
description character varyi ng(256)			
active_status boolean			
e zone			
g(64) created_by character varyi			
modified timestamp with ti me zone			
modified_by character varyi ng(64)			
setup_type smallint			

114 144 5 12 0 0

sampledb/postgres@PostgreSQL 12

2 5 =

pgadmin [https://www.pgadmin.org/docs/pgadmin4/6.18/erd_tool.html]

[https://www.visual-paradigm.com/features/database-design-with-erd-tools/]

Hochschule Aalen

Definition of the ER model

Based on the original model by Peter Chen with some prevalent extensions

- Modeling elements:
 - Entities
 - Relationships
 - N-ary relationships
 - Attributes
 - For entities and relationships
 - Multi-valued attributes
 - Compound attributes
 - Existence-dependent (weak) types
 - Generalization
 - IsA structures
- Multiple application and combination of elements is possible

Transformation

Consists of a set of steps for specific concepts

- Executed sequentially
- Steps:
 - Create a data model structure of ER diagrams
 - Transformation of attributes
 - Transformation of IsA structures
 - Transformation of weak types
 - Transformation of relationships
 - Cascade primary keys for attributes

Transformation: Attributes

- Attributes stored in a tree structure
- Multi-valued and compound attributes can be contained in any combination
- Only single-valued attributes:
 - Simple post-order traversal checking for leaves
- Including multi-valued attributes:
 - Standalone relation must be created for each one
 - Relations must be linked

Transformation: IsA structures

- IsA structures are realized by means of foreign key dependencies between the subtypes and supertypes
- Subtypes inherit all primary keys from the supertype
 - Inherited primary keys refer to the upper type as foreign keys
- In case of multiple linked IsA structures
 - "Higher level" IsA structures have to be translated first
 - That way, lower levels receive primary keys

Transformation: Weak types

- Before translating weak types the relations for entities including attributes must be in place
 - This includes IsA structures for potentially inherited attributes
- First, relations are created for all weak relationships and entities
 - After that, they are merged step by step

Transformation: Relationships

- Prior to this step, each relationship has its own relation
- This step transforms different types of relationships in a different way:
 - N:M relationships
 - The primary keys of the connected entities are added to the relation
 - 1:N
 - The relationship is resolved by merging the relation of the relationship with the entities relation on the side with the higher cardinality
 - **1**:1
 - Translation performed analogously to 1:N relationships, and the entity that receives the foreign keys and relation attributes must be specified for this purpose
 - As Min-Max notation is used, optionality has to be considered

Evaluation

- Focus: Practical applicability
- A web-based editor was created implementing the algorithms
 - ER modeling
 - Validation process for ER diagrams
 - Automated transformation to relational models

Evaluation

- The editor also contains:
 - Visualization of the transformed relational model
 - Save & Load functionality
 - Generation of SQL statements from the relational model
- Editor was used for preliminary tests with different models
- Broader evaluation with user groups is part of future work

Er Diagram	Relational Diagram				<u> </u>
					Profess
Internal p	professor	Professor		holds	
Om Om Personnel nu	mber	Personnel number	-	Com Com Personnel number	E-mai
Room numbe	r Integer	E-mail Text		Com Com Lecture number	Text
Faculty	Text	Lastname Text	- (Semester Integer	Lastnar
		Firstname Text			Text
External	professor				Firstnar
Om Om Personnel nu	mber		-]		Text
		Lecture number	•		
		Description Text			
		Phone number			
		- Personnel number			
		Phone number Text			

Conclusion

- ER modeling is still prevalent
- Many approaches dealt with ER modeling and transformation to relational models
 - Practical application was never achieved
- We created an automated ER-to-Relational transformation approach
 - Extended Peter Chen's model with most prevalent concepts
 - Transformation algorithms for all of these concepts
- We evaluated the practical applicability
 - Created and released a graphical editor capable of
 - Visually modeling ER models
 - Automatic transformation to relational models and SQL