### Text Classification Using a Word-Reduced Graph

Authors: Hiromu Nakajima, Minoru Sasaki

Presenter: Hiromu Nakajima

Graduate School of Science and Engineering, Ibaraki University(Japan)

Presenter's email: 22nm738g@vc.lbaraki.ac.jp





### About presenter

**Hiromu Nakajima** received the bachelor's degree from the Ibaraki University in 2022. He is currently a master's student majoring in computer and information sciences at the Graduate School of Science and Engineering, Ibaraki University.

His research interest lies in artificial intelligence and NLP(particularly, text classification).

## Outline

- Introduction
- RoBERTaGCN
- Method
- Experiment
- Result
- Discussion
- Conclusion and Future Work

## Introduction

#### What's RoBERTaGCN?

- Text classification method was proposed by Yuxiao Lin et al. in July 2021.
- This method Learns by inputting heterogeneous graphs of words and documents into GCN.

 This method achieves state-of-the-art in text classification tasks

## Introduction

#### Problem of RoBERTaGCN

- · RoBERTaGCN doesn't consider relationships between documents in graph.
- Topic drift, the problem of documents on different topics being associated through words with multiple meanings, can occur.

We solved these problems by adding a cosine similarity value to the weights of edges between document nodes.

## Introduction

#### Newly arising problem

 Increasing the number of weights increases the size of the graph and requires a lot of memory.

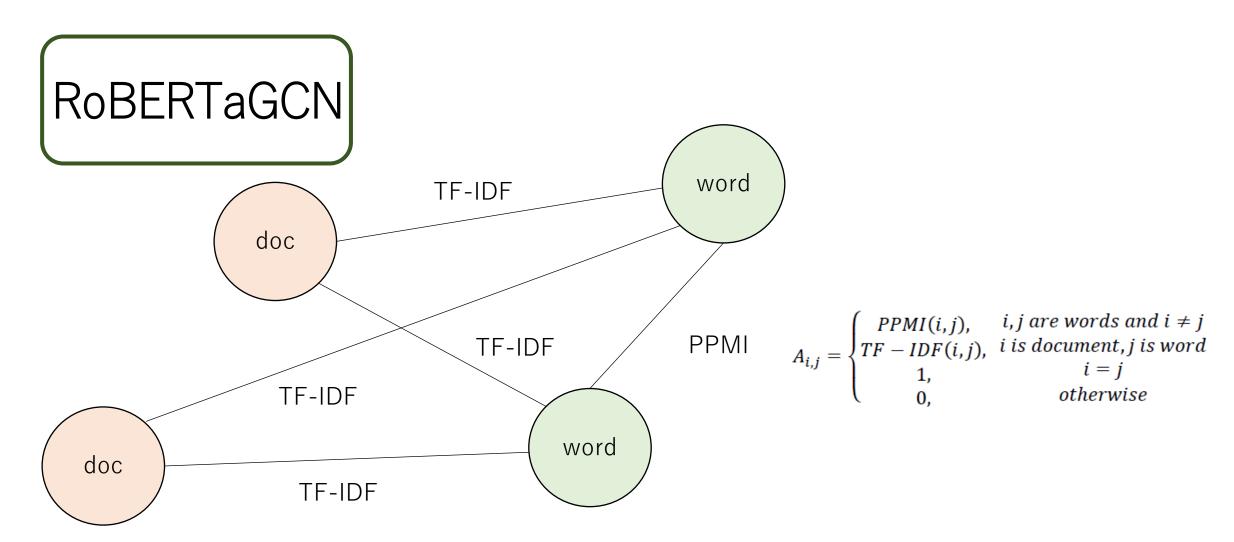


#### Purposes of this study

- Maintain classification performance while reducing memory size.
- Improve classification accuracy over conventional methods by utilizing the reduced memory and using larger trained models.

RoBERTaGCN Linear Interpolation  $Z = \lambda Z_{GCN} + (1 - \lambda) Z_{BERT}$ Adjacency GCN Softmax Matrix A Documents Labels Vectors of **BERT** Feedforward Softmax Document (RoBERTa) Nodes X

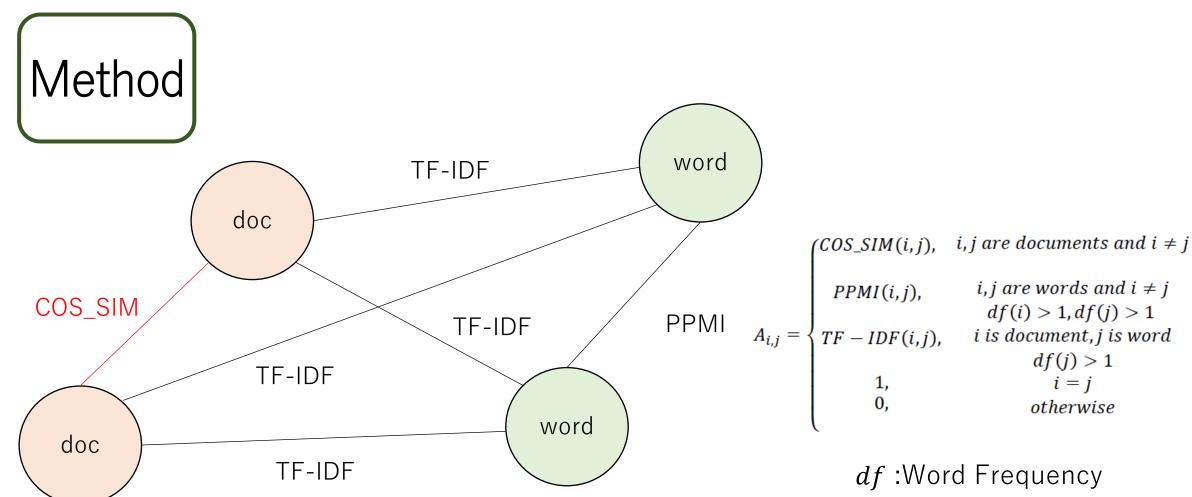
- A heterogeneous graph of words and documents is input to GCN and the document vector is input to Feedforward Neural Network to obtain the prediction results for both.
- Then, a linear interpolation of the two prediction results is computed and the result is adopted as the final prediction.



This graph doesn't consider relationships between documents in graph.

PPMI: Co-occurrence of infrequent word pairs ex.(beer,wine)>(he,has)

TF-IDF: Importance level of words in the documents



Graph that consider relationships between documents We propose the graph structure that is more compact than conventional methods by removing words that appear in only one document.

# Method

#### 1) Tokenize documents

If the document has more than 510 words, use 510 words from the beginning of the document.

#### 2) Obtain CLS vectors

Input each tokenized document into BERT and obtain a CLS vector at its final layer.

#### 3) Calculate cosine similarity and add weights

If the cosine similarity exceeds a predetermined threshold, it is added to the weights between document nodes.

## Experiment

**Experiment 1**: Experiment to confirm the effectiveness of the graphs of the proposed method.

In Experiment 1, the classification performance of the proposed method using compact graphs was compared with other methods. The trained model used was roberta-base. Accuracy was used to evaluate the experiment. Positive is the label of the correct answer, negative is the label of the incorrect answer, and negative is all the remaining labels except the correct label.

**Experiment 2**: Experiment to check classification accuracy when changing to a larger trained model.

In Experiment 2, we take advantage of the memory savings and check the accuracy of the proposed method by applying a larger trained model. Specifically, the learned model is changed from roberta-base to roberta-large.  $\lambda$  and cosine similarity values are set to the same values as in Experiment 1.

### Experiment

Dataset: 20NG(20-news-groups), R8, R52, Ohsumed, MR(movie-review)

Stopwords and symbols were removed as preprocessing.

| Dataset | Number of Documents | Average of Words | Training Data | Test Data |  |
|---------|---------------------|------------------|---------------|-----------|--|
| 20NG    | 18846               | 206.4            | 11314         | 7532      |  |
| R8      | 7674                | 65.7             | 5485          | 2189      |  |
| R52     | 9100                | 69.8             | 6532          | 2568      |  |
| Ohsumed | 7400                | 129.1            | 3357          | 4043      |  |
| MR      | 10662               | 20.3             | 7108          | 3554      |  |

### Experiment

- Threshold values are shown in the table.
- Batch\_size = 64
- Epochs = 70
- Dropout = 0.5
- $GCN_{Ir} = 0.001$
- BERT\_Ir = 0.00001
- Parameter  $\lambda = 0.7$

| Dataset | Optimal Threshold Value |  |  |
|---------|-------------------------|--|--|
| 20NG    | 0.99                    |  |  |
| R8      | 0.975                   |  |  |
| R52     | 0.96                    |  |  |
| Ohsumed | 0.965                   |  |  |
| MR      | 0.97                    |  |  |

### Result

|                | 20NG  | R8    | R52   | Ohsumed | MR    |
|----------------|-------|-------|-------|---------|-------|
| Text GCN       | 86.34 | 97.07 | 93.56 | 68.36   | 76.74 |
| Simplified GCN | 88.50 | -     | -     | 68.50   | -     |
| LEAM           | 81.91 | 93.31 | 91.84 | 58.58   | 76.95 |
| SWEM           | 85.16 | 95.32 | 92.94 | 63.12   | 76.65 |
| TF-IDF<br>+LR  | 83.19 | 93.74 | 86.95 | 54.66   | 74.59 |
| LSTM           | 65.71 | 93.68 | 85.54 | 41.13   | 75.06 |
| fastText       | 79.38 | 96.13 | 92.81 | 57.70   | 75.14 |
| BERT           | 85.30 | 97.80 | 96.40 | 70.50   | 85.70 |
| RoBERTa        | 83.80 | 97.80 | 96.20 | 70.70   | 89.40 |
| RoBERTa<br>GCN | 89.15 | 98.58 | 94.08 | 72.94   | 88.66 |
| [5]            | 89.82 | 98.81 | 94.16 | 74.13   | 89.00 |
| Experiment 1   | 90.02 | 98.58 | 96.88 | 73.53   | 89.65 |
| Experiment 2   | 89.95 | 98.58 | 96.81 | 76.08   | 91.50 |

[5] shows the classification performance when using the graph structure consider relationships between documents.

# Discussion

#### 1) About the effectiveness of the proposed graph structure

- From these three tables, it can be seen that the graph of the proposed method reduces the number of edges by 1 to 20%.
- We believe that the reason why the accuracy was maintained even with a compact graph is because the words to be removed were limited to words that appear only in a single document.
- · Words that appear in only one document do not propagate document topic information through the word node, and thus text classification performance is maintained even if those words are removed.

| Dataset     | Number of Words | Number of Words<br>Removed | Dataset     | Number of PPMI Edges | Number of Edges<br>Removed | Dataset | Number of TF-IDF<br>Edges | Number of Edges<br>Removed |
|-------------|-----------------|----------------------------|-------------|----------------------|----------------------------|---------|---------------------------|----------------------------|
| 20NG        | 42757           | 755                        | 20NG        | 22413246             | 127662                     | 20NG    | 2276720                   | 755                        |
| R8          | 7688            | 225                        | R8          | 2841760              | 32954                      | R8      | 323670                    | 225                        |
| R52         | 8892            | 245                        | R52         | 3574162              | 36138                      | R52     | 407084                    | 245                        |
| Ohsume<br>d | 14157           | 851                        | Ohsume<br>d | 6867490              | 129938                     | Ohsumed | 588958                    | 851                        |
| MR          | 18764           | 8687                       | MR          | 1504598              | 314950                     | MR      | 196826                    | 8687                       |

### Discussion

2) Why did accuracy improve when the trained model was changed to a larger one?

 When the learned model was changed from roberta-base to roberta-large, the accuracy improved significantly.

 It is thought that the change to roberta-large improved the accuracy because it was able to acquire embedded representations that better reflect the characteristics of the documents.

## Conclusion and Future Work

- This study proposes the text classification method using compact graphs in which words that appear only in one document are removed to solve the memory-consuming problem.
- Experiments confirmed that the proposed method can maintain the accuracy of the conventional method while saving a lot of memory.
- Experiments also showed that the acuracy of text classification improves when the learned model is changed to a larger one.

#### **Future Work**

- Comparing the accuracy with the proposed method when other features are used instead of cosine similarity
- $\cdot$  Optimizing the parameter  $\lambda$  for each data
- Devise a method to extract sentences of documents exceeding 510 words