XAI for Semantic Dependency

How to understand the impact of higher-level concepts on AI results

Holger Ziekow
Faculty of Business Information Systems
Furtwangen University
Germany
e-mail: holger.ziekow@hs-furtwangen.de

Peter Schanbacher
Faculty of Business Information Systems
Furtwangen University
Germany
e-mail: peter.schanbacher@hs-furtwangen.de
Presenter: Holger Ziekow

- Professor at Furtwangen University (Faculty of Business Information Systems)

- Research interest
 - Data Science and Machine Learning
 - XAI
 - Big and Streaming data
 - Application areas: (Manufacturing, Medicine, IoT, ...)

Hochschule Furtwangen
The General Problem

• Inner workings of *black box* machine learning models are hard to understand
• Humans seek insights into model decisions

Solution: XAI methods to analyze models
• XAI methods analyze black box models

• Our work introduces an XAI method to analyze how higher level concepts impact model decisions (semantic dependency)
Outline

• Background XAI and Partial Dependency Plots

• Our Extension: Semantic Partial Dependency Analysis (SDA)
 • Implementation with generators
 • Implementation with prediction models

• Experiments with Sample Implementation

• Conclusion and Future Work
XAI and Partial Dependency Plots

• Many methods exist to analyze the effect of individual features on a black box model
• Examples include SHAP and partial dependency plots (PDP)
Limitations of Partial Dependency Plots

- Analysis is limited to one feature at time\(^1\)
- Impact of higher level concepts (not directly reflected in a feature) cannot be visualized

\(^1\)or a small set of features

Illustrative artificial example

<table>
<thead>
<tr>
<th>Appetite</th>
<th>Pain</th>
<th>Attitude</th>
<th>Weight</th>
<th>Time to release</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>14</td>
<td>11</td>
</tr>
</tbody>
</table>

Partial dependency on single feature

Partial dependency on higher level concept

Morbidity relates to predicted time to release
Another example for higher level concepts

- Consider an image classification task for landscapes
- Analyze how the presence of vegetation impacts the model outcome
 - Note: “presence of vegetation” is not a feature in the input data

![Diagram showing the probability of showing rural land (vs a city) vs the degree of presence of vegetation.](image-url)
SEMANTIC DEPENDENCY ANALYSIS
Semantic Dependency Analysis (SDA)

- Idea: compute the expected model output for data instances that have the higher level concept present to the defined degree x_H

- Generate samples from the modeled domain X that have the concept to the specified degree x_H. (E.g. how much vegetation is present in a landscape image.)

$$SD_H(x_H) = E_X[\hat{f}(g(x_H, X))]$$

ML model

Random variable that returns feature vectors according to x_H and X
Illustrative Example

Probability of showing rural land (vs a city)

Degree of presence of vegetation

- no trees
- few trees
- more than a few trees
- a lot of trees
Implementing Semantic Dependency Analysis

• How to implement $g(x_H, X)$?

• Proposed methods
 • Implementation with generators
 • Implementation with prediction models
Implementing g with generators

Idea: Create synthetic data according to X and ensure that the analyzed concept is present to degree x_H.

$$g(x_H, X)$$

Data for analyzing the model with respect to x_H.

Synthetic data generation

- Generative AI Models
- 3D-Engines
- Simulators
- ...

Hochschule Furtwangen
Implementing g with prediction models

Idea: Use real data from distribution X and filter out samples that have the analyzed concept is present to degree x_H.

$$SD_H(x_H, s) = \frac{1}{s-\epsilon} \int_0^s \left(1 - \frac{d(x, x_H)}{s} \right) \, dx$$

Detection model (e.g. ML model)
Experiments with Sample Implementation
Experimental Setup

Image classification task as example

- Classify landscapes in “city” or “rural”
- Analyze the impact of the presence of trees on the model output
Generating Data for sample Classification Task

Using Stable Diffusion 2.0 with positive and negative prompts

Class “city”

Positive prompt: Photograph a city, high quality photography, Canon EOS R3

Negative prompt: digital art, drawing

Class “rural landscape”

Positive prompt: Photograph of a rural landscape, high quality photography, Canon EOS R3

Negative prompt: digital art, drawing
Generating Data for semantic dependency analysis

Class “cityNoTrees” (less than normal presence of trees)

Positive prompt: Photograph a city, high quality photography, Canon EOS R3
Negative prompt: digital art, drawing, trees
Class “cityTrees” (more than normal presence of trees)

Positive prompt: Photograph a city, trees, high quality photography, Canon EOS R3
Negative prompt: digital art, drawing
Class “TreesCity” (very high presence of trees)

Positive prompt: Photograph trees, city, high quality photography, Canon EOS R3
Negative prompt: digital art, drawing
Experimental Results1

- SDA shows that the concept of “presence of trees” impact the classification in the expected way.
- The plausible result validates the viability of the approach.

1more results in the paper
Conclusion

• **Contributions**
 - We demonstrated a way to analyze model dependency on higher level concepts
 - We described two general ways for implementation (through generators and detectors)
 - In experiments we demonstrate the feasibility in a sample implementation

• **Challenges**
 - Implementing generators and detectors with the desired behavior

• **Future work**
 - Exploring implementation of generators and detectors (e.g. 3D engines, diffusion models with image to image, etc.)