OnLine Estimation of Quantum Information Systems

Mark J. Balas
Leland T. Jordan Professor of Control and Dynamic Systems
Mechanical Engineering Department
Texas A\&M University
College Station, TX, USA 77843
mbalas@tamu.edu

ADAPTIVE 2023, Nice, France, June 2023
https://www.iaria.org/conferences2023/ADAPTTVE23.html

- Mark Balas is the Leland T. Jordan Professor of Dynamical Systems at the Texas A\&M University. He has the following technical degrees: PhD in Mathematics, MS Electrical Engineering, MA Mathematics, and BS Electrical Engineering. He has held various positions in industry, academia, and government. Among his careers, he has been a university professor for over 45 years with University of Tennessee, RPI, MIT, University of Colorado-Boulder, University of Wyoming, Embry-Riddle Aeronautical University and has mentored 47 doctoral students to completion of their degrees. He has over 400 publications in archive journals, refereed conference proceedings and technical book chapters. He has been visiting faculty with the Institute for Quantum Information and the Control and Dynamics Division at the California Institute of Technology, the US Air Force Research Laboratory-Kirtland AFB, the NASA-Jet Propulsion Laboratory, the NASA Ames Research Center. He is a life fellow of the American Institute of Aeronautics and Astronautics (AIAA), a life fellow of the Institute of Electrical and Electronic Engineers (IEEE), and a fellow of the American Society of Mechanical Engineers (ASME). He is the recipient of the AIAA GNC Control Systems Heritage Lifetime Achievement award 2018. But, if he is ever well-known, it will be as the father of the prominent Denver Drum and Bass DJ known as Despise, who is his daughter Maggie; now Doctor Despise (Molecular Biology).

Quantum Probability vs Classical Probability

Event Space: X
$\Omega \sigma$-algebra of subsets of X
Probability of event $A \equiv p(A): 0 \leq p(A) \leq 1$,
$p(X)=1, \& p(\Phi)=0, \& \quad p\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} p\left(A_{i}\right)$ when A_{i} disjoint
Bayes Theorem : $p(A \mid B) p(B)=p(A \cap B)=p(B \cap A)=p(B \mid A) p(A)$

Quantum Basics: Quantum Probability

QuantumProbability:
EventSpace : X complex (infinite-dimensional, separable) Hilbert Space
$X=\overline{\operatorname{span}\left\{\phi_{1}, \phi_{2}, \phi_{3}, \ldots .\right\}}$ orthonormal basis $\left(\phi_{k}, \phi_{l}\right)=\delta_{k l}$
Events \equiv Closed Subspaces S of X (or their Projections)
$S_{k} \equiv \operatorname{span}\left\{\phi_{k}\right\}$ basic subspace ("pure" states)
Mixed States: $x=\sum_{k=1}^{\infty} \underbrace{\left(x, \phi_{k}\right) \phi_{k}}_{P_{k} x} \quad \&\|x\|^{2}=1$

Superposition of Projections

Unit Ball =Bloch Sphere
Quantum Probability:

$$
\begin{aligned}
& p\left(x \in S_{k}\right) \equiv\left\|P_{k} x\right\|^{2}=\left|\left(x, \phi_{k}\right)\right|^{2}=\left|c_{k}\right|^{2} \\
& \text { Note }: p\left(x \in S_{k} \mid x \in S_{l}\right) \equiv\left\|P_{k} P_{l} x\right\|^{2} \neq\left\|P_{k} P_{l} x\right\|^{2}=p\left(x \in S_{l} \mid x \in S_{k}\right)
\end{aligned}
$$

Dynamics: Schrodinger Wave Equation

 \(\phi \in X\) complex Hilbert Space
 \(i \hbar \frac{\partial \phi}{\partial t}=\underbrace{H_{0}}_{\substack{\text { Hamiltonian Energy } \\ \text { Operator }}} \phi \quad\) Discrete Spectrum \(\sigma\left(H_{0}\right)=\left\{\lambda_{k}\right\}_{k=1}^{\infty}\)
 $\Rightarrow \phi(t)=\underbrace{U_{0}(t)}_{\text {Unitary Group }} \phi(0)=e^{-\frac{i}{\hbar} H_{0} t} \phi(0)=\sum_{k=1}^{\infty} e^{-\frac{i \lambda_{k} t}{\hbar} t}\left(\phi(0), \phi_{k}\right) \phi_{k}$ with $\left(\phi_{k}, \phi_{l}\right)=\delta_{k l}$
$\therefore\|\phi(t)\|^{2}=$ Probability Distribution for the Energy in the Quantum State $\phi(\mathrm{t}) \Rightarrow\|\phi(t)\|=\|\phi(0)\|$
$\Rightarrow \therefore\|\phi(t)\|^{2}=$ Probability Distribution for the Energy in the Quantum State $\phi(\mathrm{t})$
$\Rightarrow\|\phi(t)\|=\|\phi(0)\|$

Dynamics: Schrodinger Wave Equation

 \(\phi \in X\) complex Hilbert Space
 \(i \hbar \frac{\partial \phi}{\partial t}=\underbrace{H_{0}}_{\substack{\text { Hamiltonian Energy } \\ \text { Operator }}} \phi \quad\) Discrete Spectrum \(\sigma\left(H_{0}\right)=\left\{\lambda_{k}\right\}_{k=1}^{\infty}\)
 $\Rightarrow \phi(t)=\underbrace{U_{0}(t)}_{\text {Unitary Group }} \phi(0)=e^{-\frac{i}{\hbar} H_{0} t} \phi(0)=\sum_{k=1}^{\infty} e^{-\frac{i \lambda_{k} t}{\hbar} t}\left(\phi(0), \phi_{k}\right) \phi_{k}$ with $\left(\phi_{k}, \phi_{l}\right)=\delta_{k l}$
$\therefore\|\phi(t)\|^{2}=$ Probability Distribution for the Energy in the Quantum State $\phi(\mathrm{t}) \Rightarrow\|\phi(t)\|=\|\phi(0)\|$
$\Rightarrow \therefore\|\phi(t)\|^{2}=$ Probability Distribution for the Energy in the Quantum State $\phi(\mathrm{t})$
$\Rightarrow\|\phi(t)\|=\|\phi(0)\|$

QuantumMeasurement

The interpretation of Quantum Measurement is still a controversial part of Quantum Theory

The Real Heisenberg
pat or Quatcune ricory

Entanglement A quantum measurement is an entanglement with the environment (measuring device)

Heisenberg Uncertainty Principle

$$
(\Delta z)^{2}(\Delta p)^{2} \geq \left\lvert\, \underbrace{([z, p]}_{\frac{i \hbar}{2}} \phi\right., \phi) \left\lvert\,=\left(\frac{\hbar}{2}\right)^{2}\right. ; \hbar \approx 10^{-34}
$$

Quantum Collapse:

Ontology vs Epistemology

bounded/unbounded

Observable $A: X \xrightarrow{\text { self-adjoint }} X$

$$
A x=\sum_{k=1}^{\infty} \lambda_{k} \underbrace{\left(x, \phi_{k}\right) \phi_{k}}_{P_{k} x}
$$

Pure States: ϕ_{k} eigenfunctions of A
An observation/measurement of the observable A produces
a collapse of the wave function for a mixed state $\phi=\sum_{k=1}^{\infty} c_{k} \phi_{k}$
into one of the pure eigenstates $\phi_{k}\left(A \phi_{k}=\lambda_{k} \phi_{k}\right)$ with probability $\left|c_{k}\right|^{2}$

Quantum Statistical Mechanics

Ensemble Behavior
from Multiple Experiments

Quantum Density Operators : $\rho \in \square^{N x N}$ with (Hilbert-Schmidt) inner product ($\left.\rho_{1}, \rho_{2}\right) \equiv \operatorname{tr}\left(\rho_{1}^{*} \rho_{2}\right)$ (These carry all the quantum probability information $\&$ are often thought of as quantum states) Defining Properties: $\rho^{*}=\rho$ (self-adjoint); $\rho \geq 0$ (pos semi-definite); $\operatorname{tr} \rho=1$
Mixed State: $\rho=\sum_{k=1}^{N} p_{k} P_{k}$;
Pure State: $P_{k} \equiv\left(\phi_{k}, \bullet\right) \phi_{k}=\phi_{k} \phi_{k}^{*}$

Dynamics : $\frac{d \rho}{d t}=-i[H, \rho]=-i(\underbrace{H \rho-\rho H}_{L})$,Quantum Master Equation

Ensemble Averages; Quantum Measurements:
$\mathrm{y}=\langle C\rangle \equiv \operatorname{tr}(\mathrm{C} \rho)$

Quantum Measurement

POVM=Positive Operator-Valued Measure

$$
M \equiv\left\{M_{\omega}\right\}_{\omega \in \Omega}
$$

Measurement
M_{ω} self-adjoint; $M_{\omega} \geq 0 ; \sum_{\omega \in \Omega} M_{\omega}=I$ (Complete)

Probability of obtaining outcome ω
$p_{\rho}^{M}(\omega) \equiv \operatorname{tr}\left(\rho M_{\omega}\right)=\operatorname{tr}\left(M_{\omega}^{\frac{1}{2}} \rho M_{\omega}^{\frac{1}{2}}\right) \geq 0 \quad \Rightarrow \sum_{\omega \in \Omega} p_{\rho}^{M}(\omega)=\sum_{\omega \in \Omega} \operatorname{tr}\left(\rho M_{\omega}\right)=\operatorname{tr} \rho \underbrace{\sum_{\omega \Theta \Omega} M_{\omega}=\operatorname{tr} \rho=1}_{\omega}$

Quantum Dynamical System

Note: S is an invariant set: $\rho(0) \in \mathrm{S} \Rightarrow \rho(\mathrm{t}) \in \mathrm{S} \forall \mathrm{t} \geq 0$
"Once a quantum density, always a quantum density"

A Basic Online Linear Estimator

Quantum Density System

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}=-i L \rho ; L \equiv[H, \rho] \\
y=\operatorname{tr} C \rho ; \rho(0)=\rho_{0}
\end{array}\right.
$$

Linear Quantum Density Estimator

But $\hat{\rho}(t)$ does not remain in S even tho it starts there $(\hat{\rho}(0) \in S)$ and it converges to $\rho(t) \in S$

The Set of All Quantum Density Operators

$S \equiv\left\{\rho \in \square^{N * N} \mid \rho^{*}=\rho ; \rho \geq 0 ; \operatorname{tr} \rho=1 ;\right.$ tr $\left.\rho^{2} \leq 1\right\} \subseteq$ Unit Ball in $\square^{N_{x N}}$

Theorem: S is a closed, convex subset of $\square^{N x N}, \& S$ is bounded ($S \subseteq$ Unit Ball), where
S closed means: $\forall\left\{\rho_{k}\right\} \subseteq S \& \rho_{k} \xrightarrow[k \rightarrow \infty]{ } \rho \Rightarrow \rho \in S$;
S convex means: $\forall \rho_{1}, \rho_{2} \in S$, the straight line $\lambda \rho_{1}+(1-\lambda) \rho_{2} \in S$

Projection Operator for Closed Convex Sets in Hilbert Space

$$
\begin{aligned}
& X \text { Hilbert Space with } S \text { closed, convex } \subseteq X . \\
& P_{S}: X \rightarrow S: \\
& P_{S} x \text { is the (metric) Projection of } \mathrm{x} \text { onto } \mathrm{S} \text { when } \\
& \forall x \in X \quad\left\|x-P_{S} x\right\|=d(x, S) \equiv \min _{z \in S}\|x-z\|
\end{aligned}
$$

Properties of the Projection

1) $P_{S}(x)$ is defined $\forall x \in X$
2) $P_{S}(x)=x \Leftrightarrow x \in S$
3) $P_{S}^{2}=P_{S}$ (idempotent)
4) $x_{*}=P_{S} x \Leftrightarrow \operatorname{Re}(\underbrace{x-x_{*}}_{\text {Error }}, z-x_{*}) \leq 0 \forall z \in S$ ("Principle of Orthogonality, sorta")
5) P_{S} is Lipschitz Continuous, i.e. $\left\|P_{S} x-P_{S} y\right\| \leq\|x-y\| \quad \forall x, y \in X$

But P_{S} is NOT Linear.

Modified Quantum Estimator

Quantum Density System

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}=-i L \rho ; L \equiv[H, \rho] \\
y=\operatorname{tr} C \rho ; \rho(0)=\rho_{0}
\end{array}\right.
$$

Nonlinear Projection Operator
Linear Quantum Density Estimator
$\hat{\hat{\rho}}(t) \equiv P_{S} \hat{\rho}(t)$

$$
\left\{\begin{array}{l}
\frac{\partial \hat{\rho}}{\partial t}=-i L \hat{\rho}+K(y-\hat{y}) \\
\hat{y}=C \hat{\rho} ; \hat{\rho}(0)=\hat{\rho}_{0}
\end{array}\right.
$$

Using the Lipschitz continuity of P_{S} :
$\|\hat{\hat{\rho}}(t)-\rho(t)\|=\|P_{S} \hat{\rho}(t)-\underbrace{P_{S} \rho(t)}_{\rho(t) \in S}\| \leq\|\underbrace{\hat{\rho}(t)-\rho(t)}_{e(t)}\|=\|e(t)\|$
where $e(t) \xrightarrow[t \rightarrow \infty]{ } 0$ with exponential rate set by the original Linear Estimator
And $\hat{\hat{\rho}}(t) \equiv P_{S} \hat{\rho}(\mathrm{t})$ remains in $S \forall \mathrm{t}$ (and is a Quantum Density) even tho $\hat{\rho}(t)$ does not and it converges to $\rho(t) \in S$

Quantum Information Theory

Classical: Shannon Entropy $H(x)=\sum_{i=1}^{n} p_{i} \log p_{i}$,
"the average amount of information gained from learning the value of the random variable x " or "the average uncertainty before learning the value of x "

Quantum VonNeumann Entropy: $S(\rho) \equiv-\operatorname{tr}(\rho \log \rho)$

$$
\begin{aligned}
& \text { Theorem: }|S(\hat{\hat{\rho}})-S(\rho)| \rightarrow 0\left(\square \underline{t e^{-\sigma t}}\right), \\
& \text { when }\|\hat{\hat{\rho}}-\rho\|_{t r} \rightarrow 0\left(\square e^{-\sigma t} \text { exponentially }\right)
\end{aligned}
$$

Qubit Estimator

Qubit Density Dynamics

Qubit Density Estimator with the Metric Projection Operator
$y(t)$

Adaptive Quantum State Estimation in Hilbert Space

[^0]
Quantum Cognition

QuantumProbability:

EventSpace: X complex
(infinite-dimensional, separable) Hilbert Space
$X=\overline{\operatorname{span}\left\{\phi_{1}, \phi_{2}, \phi_{3}, \ldots .\right\}}$ orthonormal basis $\left(\phi_{k}, \phi_{l}\right)=\delta_{k}$
Events \equiv Closed Subspaces S of X (or their Projections)
$S_{k} \equiv \operatorname{span}\left\{\phi_{k}\right\}$ basic subspace
Mixed States: $x=\sum_{k=1}^{\infty} \underbrace{\left(x, \phi_{k}\right) \phi_{k}}_{P_{k} x} \quad \&\|x\|^{2}=1$
Quantum Probability:
$p\left(x \in S_{k}\right) \equiv\left\|P_{k} x\right\|^{2}=\left|\left(x, \phi_{k}\right)\right|^{2}=\left|c_{k}\right|^{2}$
Note : $p\left(x \in S_{k} \mid x \in S_{l}\right) \equiv\left\|P_{k} P_{l} x\right\|^{2} \neq\left\|P_{k} P_{l} x\right\|^{2}=p\left(x \in S_{l} \mid x \in S_{k}\right)$
Model of
Human Decision-Making

NSF Proposal: A Quantum Approach to Human Cognition and the Autonomy Conundrum in
Self Driving Vehicles, James Hubbard and Mark Balas

References

Clouatre, M., Balas, M., Gehlot, V., \& Valasek, J. (2022). Linear Quantum State Observers. IEEE Transactions on Quantum Engineering.pp 1-15.

Griffith, T. D., Gehlot, V. P., Balas, M. J., \& Hubbard, J. E. (2023). An adaptive unknown input approach to brain wave EEG estimation. Biomedical Signal Processing and Control. Vol 79,2023

Tristan Griffith, James Hubbard, and Mark Balas, A Modal Approach to the SpaceTime Dynamics of Cognitive Biomarkers, Springer-Verlag, 2021 ISBN: 978-3-031-23528-3
"We don't know where we are stupid until we stick our necks out"
.....................Richard Feynman

[^0]: And $\hat{\hat{\rho}}(t) \equiv P_{S} \hat{\rho}(\mathrm{t})$ remains in $S \forall \mathrm{t}$ (and is a Quantum Density) even tho $\hat{\rho}(t)$ does not and it converges to $\rho(t) \in S$

