NN2EQCDT

Equivalent transformation of feed-forward neural networks as DRL policies into compressed decision trees

Torben Logemann¹ Eric MSP Veith¹

¹Carl von Ossietzky University Oldenburg Research Group Adversarial Resilience Learning Oldenburg, Germany

Contact: torben.logemann@uol.de

T. Logemann, E. MSP Veith (University of Oldenburg)

NN2EQCDT

RL Basics

- Learning systems have achieved remarkable successes.
- Deep Reinforcment Learning (RL) (DRL) at the core of many remarkable successes
- RL involves
 - learning agents
 - with sensors and actuators
 - to achieve specific goals
 - through trial and error
- using different algorithms
- DRL = RL + Deep Neural Networks (DNNs)
- have proven that they are capable of handling complex tasks.

Actions States

Environment

Figure. RL Architecture [1]

RL application fields

Learning system are applied in various fields:

- In healthcare to determine the best treatment policy [2].
- In robotics, RL agents can learn different tasks to reach higher goals
 [2]
- DRL is used in autonomous driving because of its strong interaction with the environment [3].
- In cybersecurity, DRL is used for automatic intrusion detection techniques and defense strategies [4].
- In power grid DRL is used for voltage stabilization [5]

Motivation

- DRL agents promise true resilience by learning to counter the unknown unknowns.
- Yet no guarantees about their behavior
- But a necessity for operators, since otherwise no responsibility can be taken
- Because of potential to significantly threaten the safety the overall system.
- Architecture to provide such guarantees is presented in [6]

Understanding of agent achievements

- In complex environments agents learn complex behaviors
- Understanding currently: Study of effects of learned strategies in terms of impact on the environment

Understanding of agent achievements: Example

- Adversarial Resilience Learning (ARL) attack agents are deployed with the goal of causing voltage band violations [5]
- Explanation extracted by analysis of the impact of attacker actions on victim buses.
- Not deeply interpreted and no guarantees for all situations
- Guarantees important for defender agents with infinite horizon

- First step for guarantees is transparency to learned strategies of agents
- Idea: Use Decision Trees (DTs) for explanation
 - DTs are transparent and therefore interpretable
 - They can be trained directly (no need for black-box DNN models)
 - But DNNs are better regularized, which increases trainability [7]

Conflicting goals:

- Construction of powerful (DRL) learning system
- (Post-hoc) Explainability with comprehensible model (e.g. DTs)

Contribution

 Equivalent transformation of efficient-learnable Feed-Forward DNNs (FF-DNNs) into compressed DTs

- NN2EQCDT algorithm heavily relies on equivalence description of DNNs and DTs [8], but still addressed research gaps to better use it for explainability:
 - Transformation algorithm and actual implementation proposed for PyTorch models
 - Exponential growth is addressed by lossless compression
 - Dynamic compression reduces computation time significantly and may reduce inference time
 - Option to directly include invariants for further compression

Input FF-DNN PyTorch model for NN2EQCDT

```
1 nn.Sequential(
2 nn.Linear(2, hid, bias=True), nn.ReLU(),
3 nn.Linear(hid, hid, bias=True), nn.ReLU(),
4 nn.Linear(hid, 1, bias=True)
5 )
```

Figure 5. Actor model in PyTorch with variable hidden size

▶ For simple example: *hid* = 8

NN2EQCDT algorithm

1: $\hat{W} = W_0$ 2: $\hat{B} = B_0^{\top}$ 3: $rules = calc_rule_terms(\hat{W}, \hat{B})$ 4: T, new_SAT_leaves = create_initial_subtree(rules) 5: set_hat_on_SAT_nodes($T, new_SAT_leaves, \hat{W}, \hat{B}$) 6: for i = 1, ..., n - 1 do $SAT \ paths = get \ SAT \ paths(T)$ 7. for SAT path in SAT paths do 8: a = compute a along(SAT path)9: $SAT \ leave = SAT \ path[-1]$ 10: $\hat{W}, \hat{B} = \text{get_last_hat_of_leave}(T, SAT_leave)$ 11: $\hat{\boldsymbol{W}} = (\boldsymbol{W}_i \odot [(\boldsymbol{a}^{ op})_{\smile \iota}]) \hat{\boldsymbol{W}}$ 12: $\hat{B} = (W_i \odot [(a^{\top})_{\times k}])\hat{B} + B_i^{\top}$ 13: $14 \cdot$ $rules = calc_rule_terms(\hat{W}, \hat{B})$ new SAT leaves =15: add subtree $(T, SAT \ leave, rules, invariants)$ set hat on SAT nodes (T, new SAT leaves,16: \hat{W} , \hat{B}) 17: convert final rule to expr(T)18: compress tree(T)

Figure 1. NN2EQCDT algorithm

Effective weight matrix calculation

1:
$$\hat{W} = W_0$$

2: $\hat{B} = B_0^\top$
3: for $i = 0, ..., n-2$ do
4: $a = []$
5: for $j = 0, ..., m_i - 1$ do
6: if $(\hat{W}_j x_0^\top + B_j^\top)^\top > 0$ then
7: $| a. \text{ append}(1)$
8: $else$
9: $[a. \text{ append}(0)$
10: $W_{i+1} \in \mathbb{R}^{m_i \times k}, a \in \mathbb{Z}_2^{m_i}$
11: $\hat{W} = (W_{i+1} \odot [(a^\top)_{\times k}])\hat{W}$
12: $\hat{B} = (W_{i+1} \odot [(a^\top)_{\times k}])\hat{B} + B_{i+1}^\top$
13: return $(\hat{W} x_0^\top + \hat{B})^\top$

Figure 2. Algorithm for calculation of effective weight matrices with right-handed linear transformation and bias for ReLU activation function, based on [15]

XOR model: DT Construction

Figure. Simple example of an DT representing an XOR function constructed

XOR model: DT Compression

Simple example: Model car in MCC

Simple example: Decision tree

Simple example: 3D Plot

T. Logemann, E. MSP Veith (University of Oldenburg) NN2EQCDT

Calculation of amount of nodes

Calculation of amount of nodes of a DT

$$\#_{\rm nodes} = \sum_{i=0}^{d-1} 2^i$$

- according to the equivalence description of [8]
- without compression
- depends on the depth of each layer $d = \sum_{i=0}^{n-2} m_i$
- ▶ with the number of filters in each layer *m_i*

Comparison of construction methods

Table. Comparison of results or calculations for the construction of a DT from the simple model without and with compression of the NN2EQCDT algorithm

Compression	#nodes	Computation time
	262143	> 1.5h
\checkmark	83	9.75s

Compression ratio (amount of nodes) of 99.97%

Conclusion

- Equivalent transformation of FF-DNNs into
- significantly and losslessly compressed DTs for better explainability
- Transformation algorithm and actual implementation for standard PyTorch models as input
- Evaluated for small model
- Observed very high compression ratio
- Seems to be a good trade-off between
 - Powerful, efficient-learnable DRL models and
 - Explainability of learned strategies

Bibliography I

- E. Puiutta and E. M. S. P. Veith, "Explainable reinforcement learning: A survey," in *Machine Learning and Knowledge Extraction*. *CD-MAKE 2020*, vol. 12279, Dublin, Ireland: Springer, Cham, 2020, pp. 77–95. DOI: 10.1007/978-3-030-57321-8_5.
- [2] M. Naeem, S. T. H. Rizvi, and A. Coronato, "A gentle introduction to reinforcement learning and its application in different fields," *IEEE* access, vol. 8, pp. 209 320–209 344, 2020.
- [3] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, "Deep reinforcement learning framework for autonomous driving," *Electronic Imaging*, vol. 29, no. 19, pp. 70–76, Jan. 2017, [retrieved: 05, 2023]. DOI: 10.2352/issn.2470-1173.2017.19.avm-023. [Online]. Available: https://library.imaging.org/ei/articles/29/19/art00012.

Bibliography II

- [4] T. T. Nguyen and V. J. Reddi, "Deep reinforcement learning for cyber security," *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–17, 2021. DOI: 10.1109/TNNLS.2021.3121870.
- [5] E. M. S. P. Veith, A. Wellßow, and M. Uslar, "Learning new attack vectors from misuse cases with deep reinforcement learning," *Frontiers in Energy Research*, vol. 11, pp. 01–23, 2023, [retrieved: 05, 2023], ISSN: 2296-598X. DOI: 10.3389/fenrg.2023.1138446. [Online]. Available: https://www.frontiersin.org/articles/10.3389/ fenrg.2023.1138446.

Bibliography III

- [6] E. M. Veith, "An architecture for reliable learning agents in power grids," ENERGY 2023 : The Thirteenth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, pp. 13–16, 2023, [retrieved: 05, 2023], ISSN: 2308-412X. [Online]. Available: https://www.thinkmind. org/articles/energy_2023_1_30_30028.pdf.
- [7] J. Ba and R. Caruana, "Do deep nets really need to be deep?" Advances in Neural Information Processing Systems, vol. 27, pp. 2654–2662, 2014.
- [8] Ç. Aytekin, "Neural networks are decision trees," CoRR, vol. abs/2210.05189, pp. 1–8, 2022, [retrieved: 05, 2023]. arXiv: 2210.05189. [Online]. Available: https://arxiv.org/abs/2210.05189.

Upon here, there are backup slides.

Linear transformation

$$oldsymbol{Y}_{ ext{l}} = oldsymbol{W}_{ ext{l}}^{ op}oldsymbol{X} + oldsymbol{B} \qquad oldsymbol{Y}_{ ext{r}} = oldsymbol{X}oldsymbol{W}_{ ext{r}}^{ op} + oldsymbol{B}$$

$$\begin{split} \hat{W}_{i}^{\top} &= \sigma(\boldsymbol{x}_{i-1}\boldsymbol{W}_{i-1}^{\top} + \boldsymbol{B}_{i-1})\boldsymbol{W}_{i}^{\top} + \boldsymbol{B}_{i} \\ &= \sigma((\boldsymbol{W}_{i-1}\boldsymbol{x}_{i-1}^{\top} + \boldsymbol{B}_{i-1}^{\top})^{\top})\boldsymbol{W}_{i}^{\top} + \boldsymbol{B}_{i} \\ &= (\boldsymbol{a}_{i-1} \odot (\boldsymbol{W}_{i-1}\boldsymbol{x}_{i-1}^{\top} + \boldsymbol{B}_{i-1}^{\top})^{\top})\boldsymbol{W}_{i}^{\top} + \boldsymbol{B}_{i} \\ &= ((\boldsymbol{a}_{i-1}^{\top} \odot (\boldsymbol{W}_{i-1}\boldsymbol{x}_{i-1}^{\top} + \boldsymbol{B}_{i-1}^{\top}))^{\top})\boldsymbol{W}_{i}^{\top} + \boldsymbol{B}_{i} \\ &= (\boldsymbol{W}_{i}(\boldsymbol{a}_{i-1}^{\top} \odot (\boldsymbol{W}_{i-1}\boldsymbol{x}_{i-1}^{\top} + \boldsymbol{B}_{i-1}^{\top})))^{\top} + \boldsymbol{B}_{i} \\ &= ((\boldsymbol{W}_{i}^{\top} \odot \boldsymbol{a}_{i-1}^{\top})^{\top} (\boldsymbol{W}_{i-1}\boldsymbol{x}_{i-1}^{\top} + \boldsymbol{B}_{i-1}^{\top}))^{\top} + \boldsymbol{B}_{i} \\ &= ((\boldsymbol{W}_{i} \odot \boldsymbol{a}_{i-1})(\boldsymbol{W}_{i-1}\boldsymbol{x}_{i-1}^{\top} + \boldsymbol{B}_{i-1}^{\top}))^{\top} + \boldsymbol{B}_{i} \\ &= (((\boldsymbol{W}_{i} \odot \boldsymbol{a}_{i-1})(\boldsymbol{W}_{i-1}\boldsymbol{x}_{i-1}^{\top} + \boldsymbol{B}_{i-1}^{\top}))^{\top} + \boldsymbol{B}_{i} \end{split}$$

$$NN(\boldsymbol{x}_{0}) = (\dots((\boldsymbol{W}_{1} \odot \boldsymbol{a}_{0})(\boldsymbol{W}_{0}\boldsymbol{x}_{0}^{\top} + \boldsymbol{B}_{0}^{\top}) + \boldsymbol{B}_{1}^{\top})\dots)^{\top}$$
$$= (\dots((\underbrace{(\boldsymbol{W}_{1} \odot \boldsymbol{a}_{0})\boldsymbol{W}_{0}}_{\hat{\boldsymbol{W}}_{1,a_{0}}}\boldsymbol{x}_{0}^{\top} + (\underbrace{(\boldsymbol{W}_{1} \odot \boldsymbol{a}_{0})\boldsymbol{B}_{0}^{\top} + \boldsymbol{B}_{1}^{\top}}_{\hat{\boldsymbol{B}}_{1,a_{0}}})\dots)^{\top}$$
$$(2)$$

ARL Architecture

NN2EQCDT

Computation time of simple example DT with NN2EQCDT

Figure. Boxplot (n = 30) for the computation time of the NN2EQCDT algorithm for the simple model