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RL Basics

» Learning systems have achieved remarkable successes.

» Deep Reinforcment Learning (RL) (DRL) at the core of many

remarkable successes
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» RL involves — >
> learning agents
> with sensors and actuators Actions
> to achieve specific goals
» through trial and error
» using different algorithms Figure.

v

DRL = RL + Deep Neural Networks (DNNs)

RL Architecture [1]

> have proven that they are capable of handling complex tasks.
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RL application fields
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» Learning system are applied in various fields:

>
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In healthcare to determine the best treatment policy [2].

In robotics, RL agents can learn different tasks to reach higher goals
[2]

DRL is used in autonomous driving because of its strong interaction
with the environment [3].

In cybersecurity, DRL is used for automatic intrusion detection
techniques and defense strategies [4].

In power grid DRL is used for voltage stabilization [5]
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Motivation

» DRL agents promise true resilience by learning to counter the
unknown unknowns.

> Yet no guarantees about their behavior

» But a necessity for operators, since otherwise no responsibility can
be taken

» Because of potential to significantly threaten the safety the overall
system.

> Architecture to provide such guarantees is presented in [6]
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Understanding of agent achievements

Critic

V74 |

1
Rewards

Actions ‘ States

3, e

» In complex environments agents learn complex behaviors

» Understanding currently: Study of effects of learned strategies in
terms of impact on the environment

F) Environment
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Understanding of agent achievements: Example

> Adversarial Resilience Learning (ARL) attack agents are deployed
with the goal of causing voltage band violations [5]

> Explanation extracted by analysis of the impact of attacker actions
on victim buses.

> Not deeply interpreted and no guarantees for all situations
» Guarantees important for defender agents with infinite horizon
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Goals

> First step for guarantees is transparency to learned strategies of
agents
» Idea: Use Decision Trees (DTs) for explanation
» DTs are transparent and therefore interpretable
> They can be trained directly (no need for black-box DNN models)
»> But DNNs are better regularized, which increases trainability [7]
» Conflicting goals:

» Construction of powerful (DRL) learning system
> (Post-hoc) Explainability with comprehensible model (e.g. DTs)
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Contribution

» Equivalent transformation of efficient-learnable Feed-Forward
DNNs (FF-DNNSs) into compressed DTs

» NN2EQCDT algorithm heavily relies on equivalence description of
DNNs and DTs [8], but still addressed research gaps to better use it
for explainability:

» Transformation algorithm and actual implementation proposed for
PyTorch models

> Exponential growth is addressed by lossless compression

» Dynamic compression reduces computation time significantly and
may reduce inference time

» Option to directly include invariants for further compression
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Input FF-DNN PyTorch model for NN2EQCDT

nn.Sequential
2, hid, bias=True), nn.RelLU(),
hid, hid, bias=True), nn.RelLU(),
nn.Linear (hid, 1, bias=True)

nn.Linear
nn.Linear

(
(
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Figure 5. Actor model in PyTorch with variable hidden size

» For simple example: hid = 8
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NN2EQCDT algorithm

1: W = W[)
2: B = BJ
3: rules = calc_rule_terms(W, B)
4: T, new_SAT_leaves = create_initial_subtree(rules)
5: set_hat_on_SAT_nodes(T, new_SAT_leaves, w, B)
6:fori=1,...,n—1do
7: SAT_paths = get_SAT_paths(T")
8: for SAT_path in SAT _paths do
9: a = compute_a_along(SAT_path)
10: SAT _leave = SAT _path[—1]
11: V:V, B= got_last_hat_of_lcavc(T \ SAT _leave)
p W= (Wola), )W
13 B=(W,0la"),,))B+B/
14: rules = calc_rule_terms(W, B)
15: new_SAT_leaves =
add_subtree(T, SAT _leave, rules, invariants)
16: set_hat_on_SAT nodes(T, new_SAT_leaves,
W, B)

7: convert_final_rule_to_expr(7")
8: compress_tree(T")

Figure 1. NN2EQCDT algorithm
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Effective weight matrix calculation

1:
2:

W =W,
B=B]
for i =0,...,n—2do
a=[]
for j=0,...,m; — 1 do
if (Wjzg + B/)" > 0 then
 a.append(1)
else
. a.append(0)
Wz+l € Rmixk q € 73"

= (Wi © [( )Xk])

13’ = (Wi 0[(a"),])B + B,
: return (Wz] + B)"

Figure 2. Algorithm for calculation of effective weight matrices with
right-handed linear transformation and bias for ReLU activation

function, based on [15]
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XOR model: DT Construction

Figure. Simple example of an DT representing an XOR function constructed
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XOR model: DT Compression

Xo— X1 >0

Y=0 Y:*X0+X1

Figure. Simple compression example
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Simple example: Model car in MCC
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Simple example: Decision tree
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Simple example: 3D Plot
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Calculation of amount of nodes

» Calculation of amount of nodes of a DT
-1
#nodes — Z Zl
i=0

» according to the equivalence description of [8]

» without compression

» depends on the depth of each layer d = 27;02 m
» with the number of filters in each layer m;
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Comparison of construction methods

Table. Comparison of results or calculations for the construction of a DT from
the simple model without and with compression of the NN2EQCDT algorithm

Compression | #uodes | COmputation time
O 262143 > 1.5h
v 83 9.75s

» Compression ratio (amount of nodes) of 99.97%
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Conclusion

» Equivalent transformation of FF-DNNs into

significantly and losslessly compressed DTs for better explainability

» Transformation algorithm and actual implementation for standard
PyTorch models as input

» Evaluated for small model

Observed very high compression ratio

» Seems to be a good trade-off between

» Powerful, efficient-learnable DRL models and
> Explainability of learned strategies

v

v
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Linear transformation
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ARL Architecture
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Figure. ARL Architecture [6]
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Computation time of simple example DT with
NN2EQCDT

I ——
9 95 10 105 11 time][s]

Figure. Boxplot (n = 30) for the computation time of the NN2EQCDT
algorithm for the simple model
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