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RL Basics
I Learning systems have achieved remarkable successes.
I Deep Reinforcment Learning (RL) (DRL) at the core of many

remarkable successes

I RL involves
I learning agents

I with sensors and actuators

I to achieve specific goals

I through trial and error

Figure. RL Architecture [1]I using different algorithms
I DRL = RL + Deep Neural Networks (DNNs)
I have proven that they are capable of handling complex tasks.
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RL application fields

I Learning system are applied in various fields:
I In healthcare to determine the best treatment policy [2].
I In robotics, RL agents can learn different tasks to reach higher goals

[2]
I DRL is used in autonomous driving because of its strong interaction

with the environment [3].
I In cybersecurity, DRL is used for automatic intrusion detection

techniques and defense strategies [4].
I In power grid DRL is used for voltage stabilization [5]
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Motivation

I DRL agents promise true resilience by learning to counter the
unknown unknowns.

I Yet no guarantees about their behavior
I But a necessity for operators, since otherwise no responsibility can

be taken
I Because of potential to significantly threaten the safety the overall

system.
I Architecture to provide such guarantees is presented in [6]
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Understanding of agent achievements

I In complex environments agents learn complex behaviors
I Understanding currently: Study of effects of learned strategies in

terms of impact on the environment
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Understanding of agent achievements: Example

I Adversarial Resilience Learning (ARL) attack agents are deployed
with the goal of causing voltage band violations [5]

I Explanation extracted by analysis of the impact of attacker actions
on victim buses.

I Not deeply interpreted and no guarantees for all situations
I Guarantees important for defender agents with infinite horizon
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Goals

I First step for guarantees is transparency to learned strategies of
agents

I Idea: Use Decision Trees (DTs) for explanation
I DTs are transparent and therefore interpretable
I They can be trained directly (no need for black-box DNN models)
I But DNNs are better regularized, which increases trainability [7]

I Conflicting goals:
I Construction of powerful (DRL) learning system
I (Post-hoc) Explainability with comprehensible model (e. g. DTs)
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Contribution

I Equivalent transformation of efficient-learnable Feed-Forward
DNNs (FF-DNNs) into compressed DTs

→
X0 − X1 > 0

−X0 + X1 > 0

Y = 0 Y = −X0 + X1

Y = X0 − X1

0

0 1

1

I NN2EQCDT algorithm heavily relies on equivalence description of
DNNs and DTs [8], but still addressed research gaps to better use it
for explainability:
I Transformation algorithm and actual implementation proposed for

PyTorch models
I Exponential growth is addressed by lossless compression
I Dynamic compression reduces computation time significantly and

may reduce inference time
I Option to directly include invariants for further compression
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Input FF-DNN PyTorch model for NN2EQCDT

I For simple example: hid = 8
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NN2EQCDT algorithm
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Effective weight matrix calculation
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XOR model: DT Construction
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Figure. Simple example of an DT representing an XOR function constructed
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XOR model: DT Compression
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Figure. Simple compression example
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Simple example: Model car in MCC
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Simple example: Decision tree
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Simple example: 3D Plot
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Calculation of amount of nodes

I Calculation of amount of nodes of a DT

#nodes =
d−1∑
i=0

2i

I according to the equivalence description of [8]
I without compression
I depends on the depth of each layer d =

∑n−2
i=0 mi

I with the number of filters in each layer mi
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Comparison of construction methods

Table. Comparison of results or calculations for the construction of a DT from
the simple model without and with compression of the NN2EQCDT algorithm

Compression #nodes Computation time
� 262143 > 1.5h
X� 83 9.75s

I Compression ratio (amount of nodes) of 99.97%
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Conclusion

I Equivalent transformation of FF-DNNs into
I significantly and losslessly compressed DTs for better explainability
I Transformation algorithm and actual implementation for standard

PyTorch models as input
I Evaluated for small model
I Observed very high compression ratio
I Seems to be a good trade-off between

I Powerful, efficient-learnable DRL models and
I Explainability of learned strategies
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Backup slides

Upon here, there are backup slides.
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Linear transformation
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ARL Architecture
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Figure. ARL Architecture [6]
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Computation time of simple example DT with
NN2EQCDT

9 9.5 10 10.5 11 time [s]

Figure. Boxplot (n = 30) for the computation time of the NN2EQCDT
algorithm for the simple model
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