On the Creation of a Secure Key Enclave via the Use of Memory Isolation in Systems Management Mode

Dr James Sutherland Dr Natalie Coull Dr Ian Ferguson ian.ferguson@abertay.ac.uk

Intro

- What have we done?
 - Built a secure key-store using only commodity hardware and the existing facilities of the X86 architecture.
 - Evaluated it's functionality, security and performance.
- Talk outline
 - Problem
 - SMM
 - Experimental evaluation

Problem:

 Keeping crypto-keys safe whilst they are in RAM being used

Paged Virtual Memory System

- Pages are 'randomly' intermingled.
- **Should** be protected by the virtual memory system.
 - A process **should** not be able to access a page it doesn't own.....

...but....

• RowHammer (for example)

Motivation

- RowHammer etc.
 - Unexpected interaction between physically proximate memory components – allowed access to 'local' page
 - Privilege escalation due to sensitive system (virtual) memory pages being intermingled with low-privilege pages.
 - Virtual Machines/hypervisors
- Encryption keys stored in RAM....vulnerable

By Dsimic - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=38868341

Existing Approaches....

-to securing key enclaves.
- Protecting memory
- RAM encryption
- Address Space Layout Randomisation
- Swap encryption

- Process separation
- Process isolation
- VM isolation
- TPM
- SGX

SMM - SMRAM

- A block of DRAM that can only be addressed by the processor (no DMA from other bus devices)...
- ... when the processor is in Systems Management Mode.

Systems Management Mode

Proposed Solution

- Overall operation
 - Key negotiation
 - Transition to SMM

Proposed Solution

Generalisable authentication

 Technique can protect keys and code for a variety of authentication/crypto purposes in the enclave

Specific example - Webserver

- To prove the SMM enclave approach works, we built a secure webserver that can prove its identify by signing responses with keys/code stored in the enclave.
 - Does it work?
 - Is it secure?
 - Is it fast enough?

Evaluation – Four Experiments

Num	Experiment	Purpose
1	Use with range of browsers	Verifying basic webserver functionality
2	Qualys - SSL Labs	Verifying webserver SSL protocol compliance
3	Micro-benchmarking	Measuring the 'real-time' overhead imposed by entering and exiting SMM
4a	Comparison of webserver performance with crypto operation performed with 3 different levels of protection	Measuring the rate that pages could be served with crypto-keys handled in-process, i.e., with no protection
4b		Measuring the rate that pages could be served with crypto-keys handled in a separate process, i.e., with process-separation protection
4c		Measuring the rate that pages could be served with crypto-keys handled in SMM

Evaluation Process - Functionality

- Tested with a range of browsers/web-clients
 - No problems

Evaluation – Security

Home Projects Qualys.com Contact

You are here: Home > Projects > 591, Server Test > home deadhode org > 2001:880.294 e799.0.0.0.1

SSL Report: home.deadnode.org (2001:8b0:2f4:e7f9:0:0:0:1)

- 0	Server Key and Certificate #1		
		home.deadhode.org	
	Bubject	Prographic 0942355. effect25cdv17802adv95c75c5945c34273bc00a45375v2134745267v1a4c413	
		Pre-DANZIEL DBULIKE CHEATED/CTVCLAUH/CTVTvgCPV-av/Tabulin	
	Common names	have deadoode on	

Evaluation – Performance

- Is using SMM practical?
- Does it slow down the system too much to be useful?
 - Micro-benchmarking
 - Real time measurements of the transitions to-from SMM
 - Webserving comparision
 - How fast can we serve pages with different levels of keyisolation?

Evaluation – Micro-benchmarking

Operation	Purpose			
NOP SMI	Round trip to/from SMM			
open-close	System call requiring access to kernel memory			
getpid()	Trivial system call to reflect minimal kernel transition cost			
signing	Execute a cryptographic operation - specifically generate a signed certificate			

TABLE IV.TEST PLATFORMS FOR BENCHMARKING

Model	X200	T60	Qemu-VM	
CPU	Core 2 Duo P8400	Core 2 Duo T5600	Core 2 Duo T5600	
Clockspeed	2.26 GHz	1.83GHz	1.83GHz	
RAM 4 GiB		3 GiB	1 GiB	
BIOS	Libreboot	Lenovo original	SeaBIOS	

Micro-benchmarking results

TABLE V.EXECUTION TIME FOR SYSTEM CALLS AND SMIINVOCATIONS

Operation	X200	T60		00 T60 T60 Qemu-KVM		<u>mu</u> -KVM
Units	μs	μs	TSC	μs	TSC	
NOP SMI	448	Not available		1310	2.4m	
getpid	0.4	1.1	620	21	12k	
open/close	3	7.1	3900	26	26k	
signing	Not	878	1.606m	905	1.65m	
	available					

TABLE VI.EXECUTION TIME (TSC TICKS) ON BARE METAL

Operation	Minimum	1st Quartile	Median	3rd Quartile	Maximum
getpid	1133	1155	1155	1155	5211503
open-	6347	6479	6512	6545	3776872
close					
signing	1534995	1542285.25	1544378	1547757.75	2924856

TABLE VII.EXECUTION TIME (TSC TICKS) UNDER KVM

Operation	Minimum	1st Quartile	Median	3rd Quartile	Maximum
NOP	2235276	2326436.75	2921712.5	3618389	26339800
SMI					
getpid	20229	20295	20317	20361	33031357
open-	44902	45397	45496	45595	29565196
close					
signing	1536480	1543069	1546578	1596921	12533972

Webserving

- Testing speed of page serving with 3 level of key protection:
 - Q0 None
 - Q1 Process separation (None SMM)
 - Q2 Full SMM isolation
- https requests generated via curl
- Page size varied

Performance in each configuration

Conclusions

 The SMM technique offers greater key protection than process separation with minimal impact on processing speed.

Future Work

- Intrusion counter-measures
- Operation batching
- Other applications/protocols

