

Encrypted Container File

Design and Implementation of a Hybrid-Encrypted Multi-Recipient File Structure

27th June 2023

Tobias J. Bauer and Andreas ABmuth | Ostbayerische Technische Hochschule Amberg-Weiden t.bauer@oth-aw.de a.assmuth@oth-aw.de

B. Eng. Media Informatics at OTH Amberg-Weiden, Germany, 2022Currently in Master's Degree Program Artificial Intelligence (M. Sc.), est. 2023Interests in Infrastructure Security and the application of AI in IT Sec

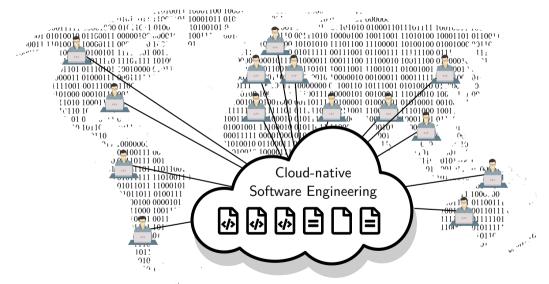
Outline

Introduction and Related Work

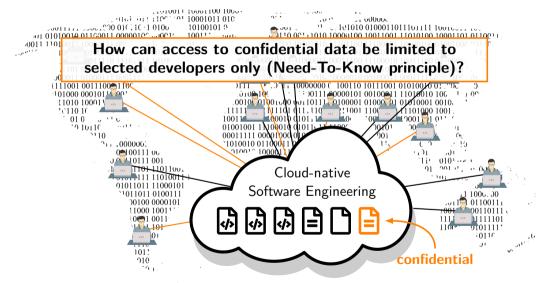
Design of the Encrypted Container File Requirements Engineering File Structure Operations

Implementation Details

Conclusion and Future Work


Motivation

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
--	--


Motivation

Motivation

Related Work

Introduction and Related Work

jak [1]

- Single command encryption and decryption (AES)
- Single key for all confidential files
- Unencrypted files on developers' computers
- Key distribution problem unsolved

Related Work

Introduction and Related Work

jak [1]

- Single command encryption and decryption (AES)
- Single key for all confidential files
- Unencrypted files on developers' computers
- Key distribution problem unsolved

git-crypt [2]

- Single command encryption and decryption (AES)
- Single key for all confidential files
- Unencrypted files on developers' computers
- GNU Privacy Guard for key distribution
- No recipient removal

- Requirements Engineering
- File Structure
- Operations

Design of the Encrypted Container File

Requirements

Design of the Encrypted Container File

Requirements

- (1) Mandatory encryption of content
- (2) Possibility to modify content
- (3) Key distribution is no prerequisite
- (4) Decryption on demand
- (5) Support for multiple recipients
- (6) Addition and removal of recipients
- (7) Minimal information gain for externals
- (8) Customizable set of recipients per file

Design of the Encrypted Container File

Requirements

- (1) Mandatory encryption of content -
- (2) Possibility to modify content
- (3) Key distribution is no prerequisite
- (4) Decryption on demand
- (5) Support for multiple recipients
- (6) Addition and removal of recipients
- (7) Minimal information gain for externals
- (8) Customizable set of recipients per file

Design goals

>• Use of hybrid encryption

Design of the Encrypted Container File

Requirements

- (1) Mandatory encryption of content -
- (2) Possibility to modify content -
- (3) Key distribution is no prerequisite
- (4) Decryption on demand
- (5) Support for multiple recipients
- (6) Addition and removal of recipients
- (7) Minimal information gain for externals
- (8) Customizable set of recipients per file

- Use of hybrid encryption
- Inclusion of recipient information to allow re-encryption on changes

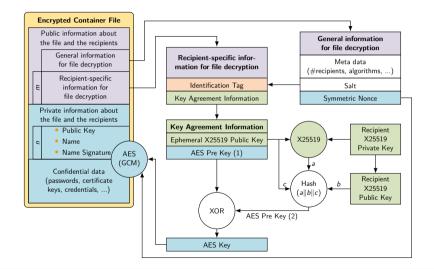
Design of the Encrypted Container File

Requirements

- Mandatory encryption of content -
- (2) Possibility to modify content -
- (3) Key distribution is no prerequisite
- (4) Decryption on demand
- (5) Support for multiple recipients
- (6) Addition and removal of recipients
- (7) Minimal information gain for externals
- (8) Customizable set of recipients per file

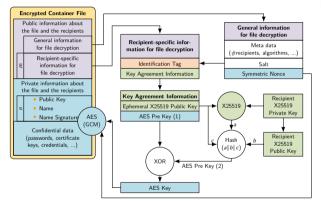
- Use of hybrid encryption
- Inclusion of recipient information to allow re-encryption on changes
- Obfuscation of recipient information for respective external parties

Design of the Encrypted Container File


Requirements

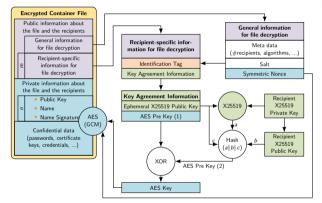
- Mandatory encryption of content -
- (2) Possibility to modify content -
- (3) Key distribution is no prerequisite
- (4) Decryption on demand 👡
- (5) Support for multiple recipients
- (6) Addition and removal of recipients
- (7) Minimal information gain for externals^{*}
- (8) Customizable set of recipients per file

- Use of hybrid encryption
- Inclusion of recipient information to allow re-encryption on changes
- Obfuscation of recipient information for respective external parties
- Delivery of the associated software as a library for embedding into existing applications


Ostbayerische Technische Hochschule Amberg-Weiden

File Structure Design of the Encrypted Container File

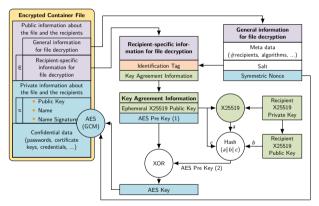
Design of the Encrypted Container File



Prerequisites for decryption

- Alice is recipient
- Her private X25519 key: sk_A
- Her public X25519 key: pkA

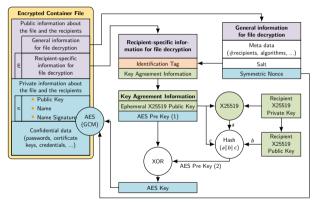
Design of the Encrypted Container File



Prerequisites for decryption

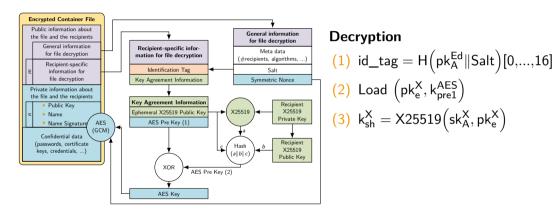
- Alice is recipient
- Her private X25519 key: sk_A^X
- Her public X25519 key: pkA
- Hash function: H
- Bit string concatenation: a||b
- Bitwise XOR: $a \oplus b$
- Bytewise truncation: *a*[0,...,*n*]
- Scalar-Point-multiplication [3]: X25519(*a*, *B*)

Design of the Encrypted Container File

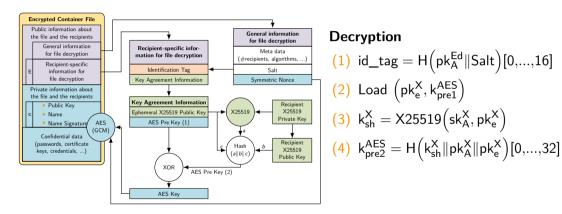


Decryption

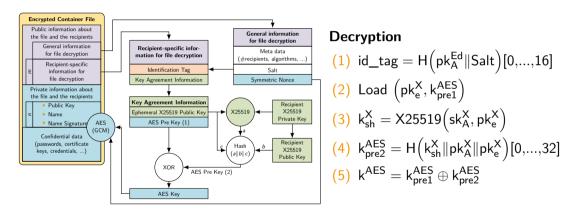
$$[1) \hspace{0.1cm} \mathsf{id_tag} = \mathsf{H} \Big(\mathsf{pk}_{\mathsf{A}}^{\mathsf{Ed}} \| \mathsf{Salt} \Big) [0, ..., 16]$$


Design of the Encrypted Container File

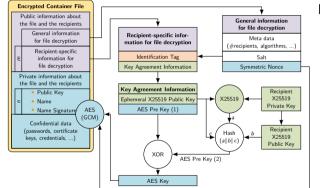
$$\label{eq:basic} \begin{split} & \textbf{Decryption} \\ & \textbf{(1)} \ \ id_tag = H\Big(pk_A^{Ed}\|Salt\Big)[0,...,16] \\ & \textbf{(2)} \ \ Load \ \Big(pk_e^X,k_{pre1}^{AES}\Big) \end{split}$$



Design of the Encrypted Container File

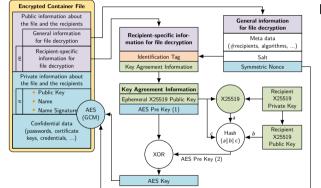


Design of the Encrypted Container File



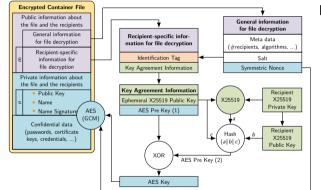
Design of the Encrypted Container File

Design of the Encrypted Container File



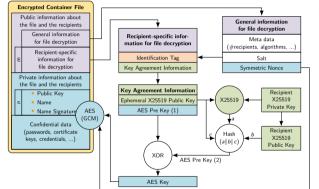
- (1) Generate symmetric AES key
 - 2) Generate AES nonce
- (3) Generate salt

Design of the Encrypted Container File



- (1) Generate symmetric AES key
 - 2) Generate AES nonce
- (3) Generate salt
- (4) For each recipient r
 - (a) Load pk_r^X

Design of the Encrypted Container File

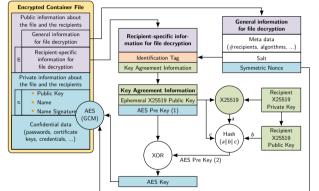


- (1) Generate symmetric AES key
 - 2) Generate AES nonce
 -) Generate salt
- (4) For each recipient r

(a) Load
$$pk_r^X$$

(b) $\left(sk_e^X, pk_e^X\right) \leftarrow Gen^X$

Design of the Encrypted Container File



- (1) Generate symmetric AES key
 - Generate AES nonce
- (3)Generate salt
- (4) For each recipient r
 - (a) Load pk_r^X $\begin{array}{ll} \text{(b)} & \left(\mathsf{sk}_{\mathsf{e}}^{\mathsf{X}},\mathsf{pk}_{\mathsf{e}}^{\mathsf{X}}\right) \leftarrow \mathsf{Gen}^{\mathsf{X}} \\ \text{(c)} & \mathsf{Compute} \ \mathsf{id_tag}, \ \mathsf{k}_{\mathsf{sh}}^{\mathsf{X}}, \ \mathsf{k}_{\mathsf{pre2}}^{\mathsf{AES}} \end{array}$

Design of the Encrypted Container File

- (1) Generate symmetric AES key
 - 2) Generate AES nonce
 - Generate salt
- (4) For each recipient r

Operations Design of the Encrypted Container File

Further Operations

General procedure

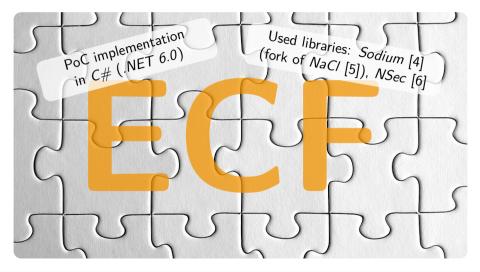
- (1) Decrypt Encrypted Container File
- (2) Modify content and/or recipient list
- (3) Encrypt Encrypted Container File

Operations Design of the Encrypted Container File

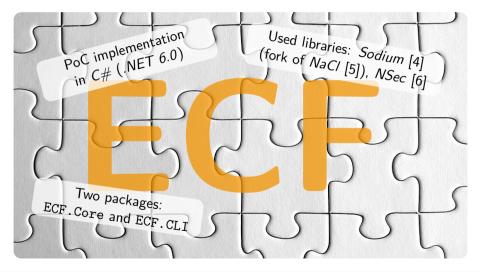
Further Operations

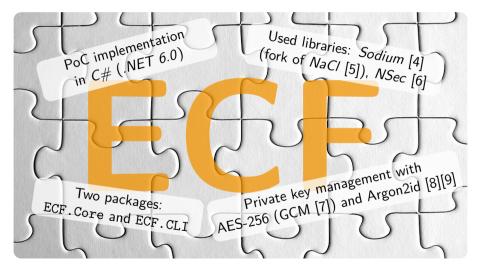
General procedure

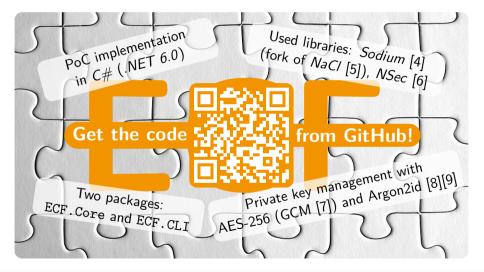
- (1) Decrypt Encrypted Container File
- (2) Modify content and/or recipient list
- (3) Encrypt Encrypted Container File


Possible operations

- Modification of confidential data
- Addition of a new recipient
- Removal of an existing recipient







- Proof of Concept (PoC) implementation supports two cipher suites
- Implementation of more cipher suites possible
- Full code and unit tests available: https://github.com/Hirnmoder/ECF

Tobias J. Bauer, B. Eng.

Ostbayerische Technische Hochschule Amberg-Weiden Department of Electrical Engineering, Media and Computer Science Kaiser-Wilhelm-Ring 23, 92224 Amberg, Germany

Email: t.bauer@oth-aw.de

Web: https://www.oth-aw.de

ECF on GitHub

References I

- Dispel LLC, "Jak simple git encryption," Dispel LLC. (2017), [Online]. Available: https://jak.readthedocs.io/en/latest/ (visited on 06/05/2023).
- [2] A. Ayer, "Git-crypt transparent file encryption in git," (2023), [Online]. Available: https://www.agwa.name/projects/git-crypt/ (visited on 06/05/2023).
- [3] D. J. Bernstein, "Curve25519: New diffie-hellman speed records," in *Public Key Cryptography PKC 2006*, Springer Berlin Heidelberg, 2006, pp. 207–228.
- [4] The Sodium Authors, "Introduction libsodium," (2022), [Online]. Available: https://doc.libsodium.org/ (visited on 06/05/2023).
- [5] D. J. Bernstein, T. Lange, and P. Schwabe, "Nacl: Networking and cryptography library," (Mar. 15, 2016), [Online]. Available: https://nacl.cr.yp.to (visited on 06/05/2023).

References II

- [6] K. Hartke, "Nsec modern cryptography for .net core," (2022), [Online]. Available: https://nsec.rocks/ (visited on 06/05/2023).
- [7] D. A. McGrew and J. Viega, "The galois/counter mode of operation (GCM)," National Institute of Standards and Technology. (May 31, 2005), [Online]. Available: https://csrc.nist.rip/groups/ST/toolkit/BCM/documents/proposedmodes/ gcm/gcm-revised-spec.pdf (visited on 06/05/2023).
- [8] A. Biryukov, D. Dinu, and D. Khovratovich, "Argon2: The memory-hard function for password hashing and other applications," version 1.3. (Mar. 24, 2017), [Online]. Available: https://raw.githubusercontent.com/P-H-C/phc-winnerargon2/master/argon2-specs.pdf (visited on 06/05/2023).
- [9] The Sodium Authors, "The pwhash* api," (2022), [Online]. Available: https://doc.libsodium.org/password_hashing/default_phf (visited on 06/05/2023).