

LLM ASSISTED NO-CODE HMI DEVELOPMENT FOR SAFETY-CRITICAL SYSTEMS Insights of a Short Impirical Study

Prof. Dr. Matthias Harter November 2023

A (VERY) SHORT RÉSUMÉ

Contact information at the end of this presentation...

12.11.2023

SHORT RÉSUMÉ

Some call it CV...

Name Prof. Dr. Matthias Harter Fields of interest / profession

- Patents and IP
- AI, AGI and humanity
- ASICs, Circuits and Systems
- Aviation, Simulators
- since 07/11 Professor for Embedded Systems and Microcomputers Hochschule RheinMain University of Applied Sciences
- 10/12 09/18 Head of the Department of Electrical Engineering and Information Technology
- 10/17 10/23 Head (founder) of new study program "Electrical and Aviation Engineering"

STATE OF THE ART: EMBEDDED SOFTWARE FOR SAFETY-CRITICAL APPLICATIONS

Examples from Aviation Engineering

A320 COCKPIT Safety-Critical Embedded SW development today

CESSNA 172 (4 SEATS) Replacement of analog instruments

DEVELOPMENT OF COCKPIT INSTRUMENTS

Scenario (example):

Artificial horizon used as Primary Flight Display (PFD) in an aircraft's cockpit.

State of the art:

Automation of the development process with certified tools, e.g., Ansys SCADE

- Visual part specified as graphical models based on OpenGL primitives
- Usage of pre-defined widgets (fast!)
- Functionality as SysML models
- SW code is *generated* from models, (almost) no hand-written source code

=> Safety-critical! Can AI assist? How?

ANSYS SCADE

Certified tool, used by Airbus, Boeing, etc. for Model Based Systems Engineering (MBSE)

"IN THE BEGINNING WAS THE WORD"

Requirements written in natural language are perfect for LLMs (e.g., GPT-4)

SCENARIO FOR THE FUTURE

How realistic (how wise) is it to use AI in safety-critical applications?

FUTURE:

Graphical and functional model, with interface to Model Based Systems Engineering (MBSE) tool

Requirements written in natural language are fed into LLM (e.g., GPT-4).

Step 1

LLM generates API calls for the development tool to create and connect the instances of the graphical and functional model of the embedded SW.

Alternative: LLM generates models directly in native file format (e.g., XML) of MBSE tool

Models are transferred into internal representation by development tool.

Step 2

Models are analyzed and edited by human engineer in the development tool, only when necessary (human-in-the-loop policy).

C/Ada source code is generated automatically by code generator (e.g., KCG).

Source code is compiled into binary (executable) for adaption by Real-Time-OS (RTOS)

CENTRIC 2023 Valencia

11

lochschule **RheinMain**

V-MODEL OF DEVELOPMENT PROCESS Crucial: Usage of LLM (AI) in which step?

METHODOLOGY FOR EVALUATION

Evaluation of the capabilities of current LLMs for a limited test case

TODAY: LIMITATIONS

Step 1

Limited to graphical model, without direct (automatic)

interface to development tool editor

Requirements written in natural language are fed into LLM (e.g., GPT-4).

LLM generates code (e.g., Python, TikZ/LaTeX) for the **graphical models** of the embedded SW only.

12.11.2023

Code is executed by interpreter and graphical models displayed.

Graphical models are analyzed and transferred into development tool editor manually by human engineer. C/Ada source code is generated automatically by code generator (e.g., KCG).

Source code is compiled into binary (executable) for adaption by Real-Time-OS (RTOS)

CENTRIC 2023 Valencia 14

Step 2

RESULTS: REQUIREMENTS 1...9 AND GPT-4 Variant (1 of 14) of the visual model, generated using TikZ / LaTeX code from GPT-4

- 1. General Layout & Dimensions:
- The PFD shall have a rectangular aspect
- ratio suitable for installation in standard cockpit instrument panels.
- The sky and earth shall be perfectly aligned at the horizon line.
- The horizon line shall be centered horizontally on the PFD, and its vertical placement shall adjust based on the aircraft's pitch angle.
- 2. Color and Appearance:
- The PFD shall represent the sky in blue.
- The PFD shall represent the earth in brown.
- The horizon line shall be a distinct, bold white line for easy visibility against both the sky and earth backdrops.

RESULTS: REQUIREMENTS 1...9 AND GPT-4

3. ... 7. omitted for clarity

- 8. Additional Flight Information:
- The PFD shall display other pertinent flight data such as vertical speed, angle of attack, and barometric pressure.
- This information should be arranged in a manner that does not clutter the primary attitude information.
- 9. Warning and Caution Indicators:
- The PFD shall have provisions for displaying warning (red) and caution (amber) indications for critical flight parameters, such as stall warnings or autopilot disengagement.

RESULTS: REQUIREMENTS 1...9 AND GPT-4

Same requirements: Variant with 84% fulfillment

Requirements **not** met:

- 6. Heading Indicator:
- ...
- The current heading shall be indicated by a fixed pointer or triangle, with the tape/rose rotating behind it.
- 7. Turn Coordinator:
- The PFD shall incorporate a turn coordinator, represented by a curved line or other suitable graphical representation, to show the rate and direction of turn.
- 8. Additional Flight Information:
- The PFD shall display other pertinent flight data such as vertical speed, angle of attack, and barometric pressure.

RESULTS FOR ALL 9 REQUIREMENTS Only GPT-4 and GPT-3.5 succeeded

of correctable

- GPT-4 always generated error-free code
- GPT-3.5 generated correctable code
- Other LLMs tested not ready for integration

Not to be confused: Code generated by LLM vs. Code generated by KCG

fulfillment code variantes code variants GPT-4 14 of 14 N/A Min. 37% Median 74% Max. 100% **GPT-3.5** 7 of 8 Min. 16% 1 of 8^a Median 39% Max. 68% CodeLlama 0% 0 of 2^b 0 of 2^b StarChat 0% 0 of 2^c 0 of 2° CodeGen2.5 0 of 2^c 0 of 2° 0%

of error-free

Footnote:

LLM

^a contained errors that GPT-3.5 corrected after being instructed

^b code output ended after approx. 5000 characters

Degree of

^c timeout after several minutes without any output

RESULTS FOR REQUIREMENTS 1 TO 5

CodeLlama now produced code

- CodeLlma generated model for shorted list of requirements due to restricted context window
- Other LLMs tested still not usable

LLM	Degree of fulfillment	# of error-free code variantes	# of correctable code variants
GPT-4	100%	8 of 8	N/A
GPT-3.5	Min. 64% Median 85% Max. 96%	4 of 4	N/A
CodeLlama	Min. 14% Median 29% Max. 86%	0 of 6	6 of 6 ^a
StarChat	0%	0 of 2 ^b	0 of 2 ^b
CodeGen2.5	0%	0 of 2 ^b	0 of 2 ^b

Footnote:

^a repeatedly the same error using Qt (code could be corrected manually)

^b timeout after several minutes without any output

CODELLAMA VARIANTS

Best results (57% and 86% fulfillment) for shorted list of requirements (requirements 1...5)

CONCLUSION

LLMs / AI can assist human engineers, but should never replace them completely

SCENARIO Al acting as assistant to engineering teams

Challenge / Risk: What if the assistant (AI) becomes

more experienced, efficient and

reliable than the human team?

- \Rightarrow get rid of human-in-the-loop policy?
- ⇒ humans only for high-level requirements?

REFERENCES AND CONTACT INFORMATION

Comments and discussion always welcome!

SELECTED REFERENCES

Full list: see paper

- 1. OpenAI, "Gpt-4 technical report," ArXiv, vol. abs/2303.08774, 2023. [Online]. Available from: https://arxiv.org/abs/2303.08774
- 2. H. Touvron et al., "Llama 2: Open foundation and fine-tuned chat models," 7 2023. [Online]. Available from: <u>https://www.semanticscholar.org/paper/104b0bb1da562d53cbda87aec79ef6a2827d191a</u>
- 3. R. Li et al., "Starcoder: may the source be with you!" 2023. [Online]. Available from: http://arxiv.org/abs/2305.06161
- 4. E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou, "Codegen2: Lessons for training Ilms on programming and natural languages," arXiv preprint, 2023.
- R. Bagnara, A. Bagnara, and P. M. Hill, "The misra c coding standard and its role in the development and analysis of safetyand security-critical embedded software." CoRR, vol. abs/1809.00821, 2018.
 [Online]. Available from: <u>http://dblp.uni-trier.de/db/journals/corr/corr1809.html#abs-1809-00821</u>
- R. Bagnara, M. Barr, and P. M. Hill, "Barr-c: 2018 and misra c: 2012: Synergy between the two most widely used c coding standards." CoRR, vol. abs/2003.06893, 2020. [Online]. Available from: <u>http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-06893</u>
- J. Holt, SysML for Systems Engineering: A Model-Based Approach, ser. Computing. Institution of Engineering and Technology, 2018. [Online]. Available from: <u>https://digitallibrary.theiet.org/content/books/pc/pbpc020e</u>

SELECTED REFERENCES

Full list: see paper

- 8. D. Iqbal, A. Abbas, M. Ali, M. U. S. Khan, and R. Nawaz, "Requirement validation for embedded systems in automotive industry through modeling," IEEE Access, vol. PP, pp. 1–1, 01 2020.
- 9. H. Touvron et al., "Llama: Open and efficient foundation language models," 2023. [Online]. Available from: <u>http://arxiv.org/abs/2302.13971</u>
- 10. P. Liang et al., "Holistic evaluation of language models," 2022. [Online]. Available from: https://arxiv.org/abs/2211.09110
- 11. F. Chollet, "On the measure of intelligence," 2019. [Online]. Available from: http://arxiv.org/abs/1911.01547
- 12. A. Srivastava et al., "Beyond the imitation game: Quantifying and extrapolating the capabilities of language models," 2023. [Online]. Available from: <u>http://arxiv.org/abs/2206.04615</u>
- 13. E. Davis, "Benchmarks for automated commonsense reasoning: A survey," 2023. [Online]. Available from: <u>https://arxiv.org/abs/2302.04752</u>
- 14. T. B. Brown et al., "Language models are few-shot learners," 2020. [Online]. Available from: https://arxiv.org/abs/2005.14165
- 15. H. W. Chung et al., "Scaling instruction-finetuned language models," 2022. [Online]. Available from: https://arxiv.org/abs/2210.11416

THANK YOU FOR LISTENING

Contact

Prof. Dr. Matthias Harter Faculty of Engineering Department of Electrical Engineering and Information Technology

Am Brückweg 26 D-65428 Rüsselsheim

+49 6142 898-4223 matthias.harter@hs-rm.de

