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Daniel Polyakov

| earned my Bachelor's Degree in Computer Engineering and a Master's Degree
in Biomedical Engineering, both from the Technion, the Israel Institute of
Technology. | worked for over 12 years in various R&D positions as a software
and algorithm engineer in companies such as SCR and Camero. | developed
products that included signal processing, computer vision and machine learning.

During the last 6 years, | routed my career to neuroscience research. | did a
research internship at Robert Sanders anaesthesiology lab at the University of
Wisconsin Hospital in Madison WI, collaborating with Giulio Tononi. Nowadays, |
am a PhD student at Oren Shiki Computational Psychiatry lab at the Ben-Gurion
University. In my research, | recruit Neural Field Theory to model large-scale
neural activity. | use the model to augment data for brain-computer interfaces,
to explore brain activity in states of disorders of consciousness (DOC) and to
improve stimulation tactics in DOC treatment. | also teach courses in neural
data analysis and computational neuroscience.




Computational Psychiatry Lab

Critical brain dynamics

Computational models of brain activity
Machine learning techniques in neuroscience
Brain-Computer Interfaces

Dynamics of the epileptic brain

Computational approaches to schizophrenia, cognitive workload, sleep deprivation

and more Prof. Oren Shriki

https://www.computational-psychiatry.com/
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MOTOR IMAGERY PARADIGM

The subject imagines a specific limb movement

Activity at the central and parietal (motor) areas is modulated and reflected in the EEG signal

A possible way to observe different activity for each limb MI is to fit Common Spatial Patterns
(CSP). Each CSP is a linear combination of EEG channels signals

A Linear Discriminant Analysis (LDA) classifier separates among features extracted from CSPs,
e.g. total power

. . Ml Common Spatial Patterns
Right hand Ml is translated to RIGHT command

Left hand MI is translated to LEFT command

[auvl
CSP1: Left hand CSP2: Right hand CSP3: Left hand CSP4: Right hand
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THE PROBLEM

Motor Imagery training process is very long and exhausting

Becomes more acute for people with illness

Shorter training sessions =2 insufficient amount of training data

-> low classification accuracy




PROPOSED SOLUTION

Data Augmentation with Neural Field Theory (NFT) Model

Perform a short training session

Use NFT to generate artificial EEG trials, based on the acquired training trials
* Similar basic characteristics

* Add variations to account for experimental signal diversity

Combine experimental and artificial trials and train the classifier = Increase
the classification accuracy




NFT - CORTICOTHALAMIC MODEL
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NFT MODEL ADVANTAGES

The model has an analytical power spectrum representation, providing a fast and
practical way for model fitting

«a Parameter Variation Spectra

A physiologically-inspired model:
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AUGMENTATION EXPERIMENT

1. Acquire an MI training set 4. Fit the corticothalamic NFT model to M|
training set average spectra; each CSP and

each class separately.

2. Create a small training set: use 33% of trials
for training and 67% for testing (3-fold
inverse cross-validation) 5. Jitter model parameters

3. Fit CSPs decomposition to the training fold

Motor Imagery Pipeline

CsP
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AUGMENTATION EXPERIMENT

Generate EEG time series, twice the size of 8.
the training set

Extract features: Total Power, Higuchi Fractal 9.
Dimension

10.

Motor Imagery Pipeline
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Train the classifier on training + augmented
data

Test on validation data; compare to the full
(100%) training set classification accuracy

Compare to noise-based augmentation
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Results: TOTAL POWER
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Results: HIGUCHI FRACTAL
DIMENSION
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CONCLUSIONS

v' NFT Data Augmentation works

v NFT generated EEG signals encompass some features better than others
=  Total Power feature results are a bit better than Higuchi feature results
= The fit is on the spectrum, so NFT replicates spectral features better than time-domain features

v In most of the scenarios NFT augmentation performed better than noise augmentation
= NFT generates a signal with more realistic distribution, rather than just noise

v Next step: evaluate this augmentation method with other BCI paradigms, such as SSVEP
and P300




THANK YOU!
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