On Factorizing Million Scale
Non-Negative Matrices using
Compressed Structures

Sudhindra Gopal Krishna, Aditya Narasimhan, Sridhar Radhakrishnan, and
Chandra N. Sekharan

Presenter: Sudhindra Gopal Krishna
sudhi@ou.edu
School of Computer Science, The University of Oklahoma, Norman, OK

IARIA

IARIA

Presenter’s Bio

* Sudhindra Gopal Krishna is a final year Ph.D. Candidate in the School of Computer
Science at the University of Oklahoma.

* His research foundation is based on democratizing resources to research via storing
the data in a small footprint and performing required operations on the sorted data
without having to extract them completely.

* Originally from Bengaluru, India, where he received Bachelor's Degree in
Computer Science from Visvesvaraya Technological University, and a Master of
Science in Computer Science from the University of Oklahoma, USA.

» Apart from his research and teaching at OU, he is engaged in outreach programs
and have worked with K-12 teachers in the state of Oklahoma, to provide Computer

Science education to High-School students under CodeSooner program, led by Dr.
Sridhar Radhakrishnan.

Contents

* Introduction

* Background

* Matrix Operations
* Proposed Method

* Heuristic Approach
* Evaluation

e Conclusion and Future Work

IARIA

IARIA

Introduction

* Matrix factorization is the process of decomposing a matrix into multiple matrices
in order to simplify computations or extract meaningful information.

* Matrix factorization is a fundamental technique used 1n many areas of
mathematics and computer science, including linear algebra, signal processing,
and machine learning.

* Types: Some common types of matrix factorization include:
 Singular Value Decomposition (SVD)
* Principal Component Analysis (PCA)
* Non-negative Matrix Factorization (NMF)
* Latent Dirichlet Allocation (LDA)

* Applications: Some common applications of matrix factorization include image
and video processing, collaborative filtering, and data compression.

IARIA

Non-Negative Matrix Factorization

* Non-negative matrix factorization (NMF) is a type of matrix factorization where
the matrices are constrained to contain only non-negative elements.

* NMF 1s often used as a tool for dimensionality reduction and feature extraction in

machine learning applications, since 1t can produce interpretable and sparse
representations of data.

* Some common applications of NMF include topic modeling, image and video
processing, and text mining.

n = ~ N x k

Q)

IARIA

NMF Constraints

e W and H:

* W is a matrix of size n x k, where n is the number of rows in V and k is the rank of the
factorization.

* H is a matrix of size k x m, where m 1s the number of columns in V and k 1s the rank of the
factorization.

* W and H are both non-negative matrices with all entries greater than or equal to zero.

* Frobenius norm:

* The Frobenius norm of a matrix M is defined as the square root of the sum of the squared
values of all the entries in M.

* The Frobenius norm is commonly used as a measure of the distance between two matrices.

IARIA

NMF Algorithms

* Some of the well-known sequential algorithms to solve the non-negative
factorization are,
e Multiplicative Update Algorithms
* Gradient Descent Algorithms and
 Alternating Least Squares Algorithms

* In this paper, we will evaluate the Multiplicative Update Algorithm defined by Lee
& Seung

Q’ A
IARIA
V, LR\

Multiplicative Update Algorithm

H

o wmmwT™wmn

w

W WEDWHED

1 begin

2 W = rand(m, k)

3 H = rand(k,n)

4 for i : maxziter do

5 H«H.x (WTA).] WITWH+1079)
6 L W« W .x (AHT) ./ (WHHT +10-9)

Figure 1. Multiplicative Update algorithm for N M F' using the
Frobenius norm as a cost function

Q' NMF - Disadvantages of Lee and Seung's

IARIA

Approach

* Although the NMF approach proposed by Lee and Seung i1s widely used and has
many benefits, there are also some disadvantages:

Local optima: The iterative procedure used in Lee and Seung's algorithm can sometimes
converge to local optima rather than the global optimum.

Initialization: The performance of Lee and Seung's algorithm can be sensitive to the initial
values of W and H.

Overfitting: If the rank of the factorization 1s chosen to be too high, NMF can overfit the data
and capture noise rather than the underlying structure.

Interpretability: The basis matrices obtained from NMF can be difficult to interpret,
particularly if the rank is chosen to be high.

Memory: The memory required to multiply two matrices requires tremendous amount of
memory, as matrices are a 2-Dimensional data structure.

IARIA

Solution

* In this paper, to solve the problem of memory requirement, we compress all
matrices (A, W, & H).

* All matrix operations required to obtain final W & H, are all performed by
partially deflating the data.

* To achieve this, in this paper we use Compressed Sparse Row (CSR), and
Compressed Binary Trees (CBT), as storage mechanismes.

IARIA

Background

 Paatero and Tapper (1994) proposed positive matrix factorization.
* Lee and Seung's NMF was inspired by Paatero and Tapper's work.

* Gonzalez and Zhang (2005) proposed an alteration to the multiplicative update
algorithm.

* Lin (2007) proposed a modification that improved convergence.

IARIA

Positive Matrix Factorization (PMF)

* Proposed by Paatero and Tapper in 1994,
* A matrix factorization method that restricts the factors to be non-negative.

* Inspired Lee and Seung's work on NMF.

IARIA

Alternatives to Lee and Seung's NMF

* Gonzalez and Zhang (2005) proposed an alteration to the multiplicative update
algorithm.

* Lin (2007) proposed a modification that improved convergence but at the cost of
more operations per iteration.

IARIA

Efficient Storage of Large Sparse Matrices

* The cost of storing zeros 1n large sparse matrices can be expensive and redundant.

* The sparsity of a matrix 1s defined as the ratio of the number of non-zero elements
to the number of all possible elements.

* In this paper, we propose using our novel CBT algorithm and existing structures
like CSR to efficiently store large sparse matrices.

IARIA

Matrix Operations

* To obtain W and H, we need to perform several matrix operations such as,
* Multiple Matrix Multiplication
* Element-Wise Matrix Multiplication
* Element-Wise Matrix Addition
* Element-Wise Matrix Subtraction (Frobenius Norm)
* Element-Wise Matrix Division
* Matrix Transpose

* All operations should be performed on the compressed structure by the means of
partial deflation

IARIA

Element-Wise Matrix Operations

Input: Matrix A, Matrix B, Operation Op
Output: resultan_matrix C
1 if A.rowSize != B.rowSize or A.colSize !=
B.colSize then
2 Error: Matrix dimensions should be the
L same for both the matrices

3 for i in numberofRows do

4 if Ali].rows == 0 and B[i].rows == 0 then
5 Cli]=0

6 continue to the next row

7 else if A/i] == 0 then

8 C[i] = BJi]

continue to the next row

10 else if B/i] == 0 then
11 C[i] = A[1]

12 B continue to the next row

13 for alndex in A[i] do

14 for bIndex in B[i] do

15 Clil[j] = Alillj] "Op” BIil[j]

16 Where "Op” = "+ or - or .* or ./~

17 return C

16

Matrix Transpose

Qe Qo o
= o0 o
Lo b

e
oo W N I

a1+d4+g7 a2+d5+g8:a3+d6+g9

;b1+e4+h7 ' b2 +e5 + h8 b3+e6+h9

¢l +f4 +i7 ;' c2 + 5 +i8 .' c3 + f6 + 19

Fig. 1: Shows the working of AT x B, by storing the
result in a pattern to eliminate the need of transposing
the actual matrix.

IARIA

Ax BT =

OO WwWoto
OO0 -
NN ON N
O b Ot Ww
WN=O

Wwo NN O
O OB =
N = O W
OO M- W

] ey

WN =0
| prrmmreme s —— |

|-
o (3 () () ()
= x|+ x|+ x]+|x
co(B) — 2 4 3 1

= ¢o[C] = {10 20 15 5} @)

Equation 2, shows an example of A X BT, where
the partial resultant of column cy[C], is obtained after
multiplying the first row r9[A] of A, and virtually
transposed the first column of B, in this case it is still
’I"()[B].

17

Q| A
IARIA
| JARIA

Multiple Matrix Multiplication

X ’I’L'{ X m"< -Dz

18

Q’ A
IARIA
V, LR\

Evaluating Multiple Matrix Multiplication

160.00

140.00

Time (seconds)
o0
=]
]
S

500 1,500 2,500 3,500 4,500 5,500
Number of non-zero elements (x 10%)

—eo—Traditional MM —e—Sequence MM

For a Million-By-Million Matrix with varying sparsity

19

IARIA

Heuristics for Faster Convergence

* One of the drawbacks of the multiplicative update approach is the convergence time and
the iterations 1t takes to find an optimal solution.

* One way to make the algorithm faster is to reduce the number of non-zero values in the
input matrix.

* A heuristic approach to reduce the number of non-zero values 1s to make specific values
zero based on a threshold number of index positions per row.

* The decision to remove values at certain index positions will be based on two reasons:
reducing the size of the compressed CBT structure and removing noise in the input data.

* This may lead to more loss, but the threshold will dictate the metric of the percentage of
loss added to the already lossy factorization approach.

* The heuristic approach will not be optimal but will lead to reduced resource utilization.

* Space is reduced in the already compressed structure, and time to query the smaller CBT
structure 1s reduced.

Q)

Evaluation

TABLE I: Shows the result of the factorization using C' BT and C'SR and the memory required to process the

factors.
W x H Avg Mem/Iter

Matrix A NNZ |Matrix Size CBT CSR Inner Rank| NNZ |Matrix Size| Matrix CBT |CSR

2688 %2688 | 23,089 | 55.12 MB (217.36 KB |[216.23 KB 448 216.58 KB| 216.51 KB | 73.5 MB | 0.54 KB [0.67 MB

5376x5376 | 57,752 | 220.5 MB |547.53 KB |546.68 KB 255 513.87 KB | 526.46 KB |241.41 MB| 0.29 KB | 30 MB
21504 x21504|1,385,198| 3.44 GB 12.7 MB | 12.98 MB 512 1265 MB | 1295 MB | 3.6 GB | 13.1 MB | 150 MB
43008 x43008 | 998,531 | 13.78 GB | 945 MB | 9.53 MB 670 9.1 MB 998 MB | 14.21 GB | 9.92 MB | 87 MB
65536x65536(1,460,048| 32 GB 14.23 MB | 14.05 MB 665 13.45 MB | 14.12 MB | 32.64 GB |14.80 MB | 200 MB

21

IARIA

Evolution of W & H

120.00
100.00
80.00
60.00

40.00

Memory used per iteration (kB)

20.00

0.00
0 2 4 6 8 10 12

Interations

WxH =—e—MatrixH —e—Matrix W

14

16

12,000

10,000

8,000

6,000

4,000

2,000

0

Number of non-zero elements in WxH (x 103)

22

IARIA

IARIA

Conclusion and Future Work

* Million-scale matrix can be factorized directly on the compressed structure.
* Intermediate result can be eliminated using multiple matrix operations.

* Introduced element-wise matrix multiplication, division, subtraction, addition, and
sequential multiple matrix multiplications.

* Traversing through the matrix in pattern can avoid an explicit transpose operation
during matrix factorization.

* Heuristic relationship between inner rank and sparsity of factor matrices.
* Lower rank leads to smaller factors W and H.

* Future work: expand computation to ALS and GD, and Binary Matrix
Factorization using compression algorithms.

IARIA

Thank you

Questions?

