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Intro about presenter – Adwitiya Pratap Singh

Adwitiya Pratap Singh received his bachelor’s in technology degree in

Information Technology from the Manipal University, Jaipur in 2022. He is

currently working at Hughes Systique Corporation as a software engineer.

He is currently working in the CoE (Centre of Excellence) department at the

company concerned with advancements in wireless technology with the aid of AI.



www.hsc.com

Cell Selection and Beam Selection

➢ Larger Bandwidth at millimeter waves is the Key 
for achieving higher Data rate.

➢ Attenuation in millimeter wave is very High as a 
result  signal can not travel longer distance. 

➢ To overcome this, Using Multiple Antennas in 
MIMO system. Directional signal called Beam can 
be used for Transmission.

Beam 
Selection 
With AI Faster Selection i.e.

Reduced Latency

Input Data e.g. UE 
Location ,Speed,
Signal Strength  

➢ Cell Selection Procedure:
❑ 35 parameters for System Information
❑ 10 parameters for speed dependent 

Selection
❑ 13 parameters for interworking
❑ New technology of Beam Selection and 

Sweeping
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Traditional Beam Selection in 5G

▪ There is a need of tracking which is one of the directionality challenges of 5g mmWaves. And also in some 

cases change the base station.

▪ Traditional Beam Management : There is a need for pilots that are transmitted by the TX and also an 

exhaustive scan by the receiver to find the optimal beam. Results in High latency and overhead .

▪ Both the TX and the RX need to discover each other by finding the initial beamforming vectors that yield 

sufficient Signal-to-Noise-Ratio (SNR) to establish a link. This crucial procedure is usually called initial access
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Aim and Contributions of Our Paper 

▪Aim of the paper :

▪ Create a sensory aided deep learning model to reduce the time taken to 

perform beam-selection.

▪ Implement this in a simulated federated learning environment to gauge 

practical feasibility.

▪Contributions:

▪ Created a multi-modal time-series model to perform beam selection aided by 

GPS and Image data.

▪ Experimented with multiple aggregation techniques to use during federated 

learning and compared their results with centralized learning.
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Model Visual Representation
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Feature Extraction
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Gated Recurrent Unit 
Stacked  

Linear Layers for 
classification
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Multi-modal data Preprocessing 

▪Camera data 

▪ Using pretrained MIRnet to brighten/enhance data with low brightness 

conditions.

▪ Background masking to focus on important features retaining the road.

▪ Using PIDnet to focus on the cars on the streets.

▪GPS data

▪ Converted latitude-longitude cordinates to cartesian coordinates.

▪ Min-max normalization.

▪ Calibrated angle normalization
▪ The 0-degree angle for all images were calibrated to its center pixel.
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Challenges of Centralized Model 

Individual beam prediction models with no sharing

Server 1 Server 2 Server 3

• In a real-life deployment, each gNodeB would have a view of only a specific 

location/scenario. To create and run a centralized model the gNodeB should have 

access to all possible data or scenarios. 

• However, it is prohibitively expensive computationally to get the data in one 

centralized place.

• Security of data is also at risk if the cumulative data is stored and processed at one 

position, one breach would cause a major loss.

• In a centralized learning system, the central controller becomes a single point of 

failure.



www.hsc.com

Federated Learning 

▪ Data is distributed across different gNodeB 

depending on locality.

▪ Using gNodeB as local servers reduces chances of 

local server dropping out of model training.

▪ Each model is trained based on local data and 

skews with a different bias.

▪ Model weight is sent to local server hence reducing 

single point failure.

▪ Updated aggregated model is then uploaded to all 

gNodeB.
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Aggregation Techniques 

An aggregation technique is used to accurately combine and average 

the local model weights at the central server.

▪ Federated stochastic Gradient Descent (FSGD): 
▪ In the case of FSGD after the weighted average is formed of the given clients 

then the difference between the current global model weights is computed after 
which we subtract the difference to move opposite to the rising gradient.

▪ Federated average momentum:
▪ This is an extension of the Federated Average technique that includes 

momentum in the aggregation step.

▪ Federated Proximal:
▪ Federated Proximal is a technique that uses a proximal operator to enforce 

sparsity in the model updates. 
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Results and Analysis 

• The centralized implementation is identical to the federated model except that we 

used the entire dataset at one node to train the model at once. 

• We are emphasizing the minimum accuracy amongst the peaks since that is the 

result after aggregation. This dip in accuracy is due to the new scenario data 

weights that is introduced to the global model, it maxes out at 80% accuracy in 

beam selection. 
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Contd.

▪ As seen above federated stochastic gradient descent worked best amongst all. This 
can be corroborated with theory as well since FSGD is slightly immune to the non-iid 
imbalanced dataset since it allows for more local model updates. 

▪ The best federated model results do lag the centralized model, but it covers in time 
to process, since parallel processing of three models at three different nodes allowed 
the model to train 37% faster on the CPU. This would be increased even further if 
the data is loaded on to the GPU.

Models Top 5 of 64 Top 10 of 64

Baseline model (GRU) 77 % 80%

Centralized model 83% 90%

Federated Model 64% 80%

Models Top 5 of 64 Top 10 of 64

FSGD 64 % 80 %

Proximal 60 % 75 %

Fed Avg 65 % 76 %
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▪Some applications require immediate or near-real-time model updates 

to respond to dynamic data patterns or changing conditions. Faster 

training in federated learning allows for quicker updates to the global 

model.

▪Since bulk of the training is done at the gNodeB containing the 

sensors itself, the communication overhead is reduced.

▪ Increasing the number of local nodes will help us generalize a set 

pattern of close by areas hence further increasing the model accuracy 

while keeping the training time at a minimum. 
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Future Work 

▪ The use of other sensors can also prove to be a viable option in 

sensor-aided beam prediction such as accelerometers and 

gyroscopes. 

▪Different aggregations techniques can be explored to analyze the 

resultant effect in the performance of federated learning. 

▪ The federated model falls prey to overfitting if given a small number of 

clients, we can investigate the behavior by varying the number of 

active clients in federated learning. 

▪A grad norm clipping algorithm can also be used. To only use a certain 

section of data from the gNodeBs which might help remove outliers.
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