6G Networks: Challenges and Research Directions

Richard Li
Chief Scientist and SVP, Network Technologies,
Futurewei, USA

AFIN 23 - The Fifteenth International Conference on Advances in Future Internet
Porto, Portugal
Sept 25-29, 2023
Richard Li

- Chief Scientist, SVP, Head of the Network Technologies Lab, Futurewei, USA (219 – Now)
- Chairman, ITU-T Focus Group on Network 2030, ITU-T, Switzerland (2018 – 2020)
- Vice-Chairman, ETSI ISG NGP (Next-Generation Protocols), ETSI, France (2016 – 2019)
- Chief Architect, SVP, Technical VP, Senior Director, Distinguished Engineer, Huawei R&D USA (2007-2019)
- Fellow of IARIA, 2016 Spring/Summer
- Ph.D. in Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Portugal
- Master and Bachelor in Computer Science and Engineering, Southeast University, China
6G is not yet defined, but …

❖ Its visions are being set up, and use cases are being identified
 • ITU-T Focus Group on Network 2030
 • Next-G Alliance, USA
 • 6G Flagship, Finland,
 • 5G/6G Innovation Center, University of Surrey, UK
 • Europe Hexa-X
 • China IMT-2030 Promotion Group
 • Many, many others

❖ Its enabling technologies are under way
 • Basic Technology: Physics, Material, Biology, Chemistry, Semi-Conductor
 • Radio Technology: TeraHtz, RIS, OAM, IHR
 • Networking Technology: New Architecture, New Communication Methods, New Protocols
 – Omni-Convergence and Reconvergence
 – High Precision Communications
 – Qualitative Communications and/or Semantic Communications
 – Heterogenous Networks: Heterogenous Access, Heterogenous Control, Heterogenous Networking Resources and Power

❖ All that 5G promised but not delivered are expected to be supported by 6G
❖ 6G will ultimately rely on enabling technologies: neither over-promised nor under engineered
Will 6G Networks Be the Same as Before?

Wireless Evolution:
- 1980s: 1G
- 1990s: 2G
- 2000s: 3G
- 2010s: 4G
- 2020s: 5G
- 2030s: 6G

Internet Evolution:
- 1961: Packet Switching
- 1974: TCP/IP
- 1981: IPv4
- 1995: IPv6

Will 6G Networks Be the Same as Before?

Does this network protocol stack still work for 6G applications? If yes, why? If not, what will we do about it?
Let’s start with industrial automation and control
Closed-Loop Control System for Automation

Communication Network for Distributed Automation System

Source: 3GPP TR 22.804 V16.2.0 (2018-12)
Classical Automation Pyramid

- **Planning and Control**
 - Management Level: ERP
 - Planning Level: MES
 - Supervisory Level: SCADA
 - Control Level: PLC
 - Field Level: Sensors, Actuators, Measuring instruments, Level Switches, Valves, Pumps

- **Data Acquisition**
Cloudification of Automation Pyramid

Credit: Heiko Koziolek, Towards the Automation Cloud Architectural Challenges for a Novel Smart Ecosystem, ABB Group
Many 6G use cases require more than connectivity; KPI guarantee is a must!!!

references:
- ITU-T Focus Group on Network 2030 Deliverables
- 3GPP TS 22.261 V15.5.0 (2018-07)
- 3GPP TS 22.261 V17.3.0 (2020-07)
- 3GPP TR 22.804 V16.2.0 (2018-12)
- 3GPP TS 22.104 V17.3.0 (2020-07)
Some 6G applications are mission-critical, and even life-critical

Packet loss is a serious issue! If a packet is lost, its retransmission will triple the latency

Maximal End-to-End Latency = 30 ms (3GPP TS 22.261 version 15.5.0 Release 15)
What happens in the existing networks?

A packet can get lost. If it is lost, the sender is responsible for its re-transmission. If the retransmission happens, the latency will triple that of a single successful trip.
Current Network: Packet Delivery KPI is unpredictable

- **Best Effort**: No guarantee for anything
- **DiffServ**: Per-hop differentiation
- **Traffic Engineering**: Bandwidth Guarantee

Unpredictable KPI over the Internet

- **Unpredictable Latency**
- **Unpredictable Packet Loss Ratio**
Classical Mail vs. the Existing Protocol

Classical Mail

IEEE ComSoc
3 Park Avenue, 17th Floor
New York, NY 10016-5997

Source Address
Destination Address
User Data
Packet Header
Payload

Richard Li
Futurewei Technologies, Inc.
Santa Clara, CA 95050
What if We Reimagine a Packet as a FedEx Package?

* FedEx is a trademark of FedEx Corp.
Deterministic and High-Precision KPI Guarantee

New IP Packet

<table>
<thead>
<tr>
<th>Manifest</th>
<th>Sender S</th>
<th>Receiver D</th>
<th>Contract</th>
<th>User Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>In-time delay == 8 ms</td>
<td></td>
</tr>
</tbody>
</table>

- **Predicted propagation delay (ppd):** 1.5 ms
 Remaining #nodes (m): 3
- **Predicted propagation delay (ppd):** 1 ms
 Remaining #nodes (m): 2
- **Predicted propagation delay (ppd):** 500 ms
 Remaining #nodes (m): 1

- **Local delay budget**
 e.g. $(8-1.5) \text{ ms} / 3 = 1.83 \text{ ms}$
- **Actual local delay:** 1.5 ms

- **Local delay budget**
 e.g. $(8-3) \text{ ms} / 2 = 2 \text{ ms}$
- **Actual local delay:** 2.5 ms

- **Local delay budget**
 e.g. $(8-6.5) \text{ ms} / 1 = 1.5 \text{ ms}$
- **Actual local delay:** 1.5 ms

Ref: A. Clemm and T. Eckert, High-Precision Latency Forwarding over Packet Programmable Networks, IEEE NOMS 2020, April 2020
Now let’s turn to non-terrestrial networks …
Some 6G use cases require convergence of heterogeneous networks

Layer 3

- Trunking and Head-End Feed
- Backhauling and Tower-Feed
- Communications on the Move
- Multi-Path Forwarding

IP
How do we address and identify a satellite?

- Satellite network
 - Multiple layer
 - Each layer is an interleaved grid network
- Satellite can be identified by:
 (Owner Code, Shell_index, Orbit_index, Sat_index)

- draft-Ihan-satellite-semantic-addressing-01
Convergence of Spatial and Terrestrial Networks

Satellite Address Format

<table>
<thead>
<tr>
<th>Owner Code</th>
<th>Shell Index</th>
<th>Orbit Index</th>
<th>Sat Index</th>
</tr>
</thead>
</table>

Contract: It uses a new type of routing, called instructive routing, a variant of source routing of the form:

```
<table>
<thead>
<tr>
<th>Func Code</th>
<th>Args</th>
<th>Func Code</th>
<th>Args</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Instruction 0

- Action 1: Add NewIP Hdr
- Action 2: Fwd to uplink

Satellite Addr: S2=(Shl1,Obp1,Sat2)

Satellite Addr: S1=(Shl1,Obp1,Sat1)

Actions:
- InstOS +=2
- Fwd to S3

Satellite Addr: S3=(Shl1,Obp2,Sat3)

Actions:
- 1. Fetch Intf_ID
- 2. Fwd pak to Intf_ID

Satellite Addr: S=(Shl1,Obp1,Sat1)

Actions:
- 1. Compare GS-Dst
- 2. Remove NewIP Hdr and associated info
- 3. Lookup D
- 4. Fwd pak to Internet

Satellite Addr: S=(Shl1,Obp1,Sat1)

Actions:
- SA: S
- DA: D
- Data

Contract:
- Type: Sat-Routing
- InstOS = 0
- RL=3, ST = 0
- GS-Src: GS-A
- GS-Dst: GS-B
- Ins[0] = 0x01,Sat2
- Ins[1] = 0x03,Obp2
- Ins[2] = 0x07,Intf_ID

Satellite Addr: S=(Shl1,Obp1,Sat1)

Actions:
- SA: S
- DA: D
- Data

Contract:
- Type: Sat-Routing
- InstOS = 2
- RL=3, ST = 0
- GS-Src: GS-A
- GS-Dst: GS-B
- Ins[0] = 0x01,Sat2
- Ins[1] = 0x03,Obp2
- Ins[2] = 0x07,Intf_ID

Satellite Addr: S=(Shl1,Obp1,Sat1)

Actions:
- SA: S
- DA: D
- Data

Contract:
- Type: Sat-Routing
- InstOS = 4
- RL=3, ST = 0
- GS-Src: GS-A
- GS-Dst: GS-B
- Ins[0] = 0x01,Sat2
- Ins[1] = 0x03,Obp2
- Ins[2] = 0x07,Intf_ID

Satellite Addr: S=(Shl1,Obp1,Sat1)

Actions:
- SA: S
- DA: D
- Data

Contract:
- Type: Sat-Routing
- InstOS = 4
- RL=3, ST = 0
- GS-Src: GS-A
- GS-Dst: GS-B
- Ins[0] = 0x01,Sat2
- Ins[1] = 0x03,Obp2
- Ins[2] = 0x07,Intf_ID

Satellite Addr: S=(Shl1,Obp1,Sat1)

Actions:
- SA: S
- DA: D
- Data

Contract:
- Type: Sat-Routing
- InstOS = 4
- RL=3, ST = 0
- GS-Src: GS-A
- GS-Dst: GS-B
- Ins[0] = 0x01,Sat2
- Ins[1] = 0x03,Obp2
- Ins[2] = 0x07,Intf_ID
Now let’s talk about Multimedia, AR/VR and Holographic Type Communications …
AR/VR/Holograms are subject to motion-to-photon time

Motion-to-Photon Time: Total 20 ms

Framing Encoding Streaming
5-7 ms

Display Decoding

Network Transport

Source: Samsung
Existing Technology: It’s all about Syntactical information

Quantitative Communications: A *Native Stream* of Bits and Bytes

<table>
<thead>
<tr>
<th>Syntax</th>
<th>What is received</th>
<th>What is sent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Every bit and byte has the same significance to routers/switches</td>
<td></td>
</tr>
</tbody>
</table>

Good for
- File/Document Transfer
- Banking, Shopping

Overkill for some applications
- Holograms
- Disaster Environment
6G networks need Semantic/Qualitative Communications
Qualitative Communications: A Structure of Bits and Bytes

In payload, bits and bytes are not equally significant. Instead, they are different in their entropies.

Less significant bits and bytes may be dropped.
Partial or degraded, yet useful, packets may be repaired and recovered before being rendered.

Good for:
- Large volume of image-like data
- Holographic type communications
- Media with digital senses
- Disaster Environment

User Data Payload: Divided into 10 pages.

Contract:

Event: Congested OR Radio Unstable
Action: Cut
Meta-Data: Page 1, Page 10, Page 9, Page 2, Page 8

On congested node: after cut

Cut is preferred to drop-and-retransmit
If a router is congested, the whole packet is dropped.

On being congested, wash in the order of 2, 3, 1, 4.

If a router is congested, the less significant chunks are dropped. Camera images, AR/VR, and holograms are usually very large. The packet may still arrive at the destination with the most significant chunks. This is still better than nothing for many applications that do not require an exact copy of information.
Qualitative Communications with New 6G Networks

(1) The image is structured into different pages/chunks with different entropy values; (2) The pages with smaller entropy values will be washed away when congestion arises; (3) Even when the network is congested, the packet still arrives at the destination mostly with lower but acceptable quality; (4) No retransmission is required; (5) This is especially useful for Holographic Teleport, Holographic Type Communications, Real-Time Broadband Video Communications, where latency is more important than partial loss of information.

Ref:
- Qualitative Communication Via Network Coding and New IP, IEEE HPSR 2020
Qualitative Communications: Semantics-Based and Significance-Based

Semantics-Based

Sender address: S
Receiver Address: D
Contract: On: congested
convert: Richard picture

Significance-Based

Sender address: S
Receiver Address: D
Contract: On: congested
Cut: P1, P10, P9, P2, P8

Receiver
Qualitative Rendering

Sender address: S
Receiver Address: D
Contract: ---
Text: Richard Picture

Receiver
Qualitative Rendering
Summary
6G Networks Expected to Support:
Omni-Convergence, KPI Guarantee, and Holographic Transport

Omni-Convergence

- Convergence of Spatial (Non-Terrestrial) and Terrestrial Networks
- Convergence of ICT Networks and OT Networks
- Convergence of Physical and Digital Universes
- Convergence of Computing and Communications
- Convergence of Sensing and Communications
- Convergence of Intelligence and Communications

Holographic Type Communications
- Live AR/VR Streaming
- Volumetric Multi-Camera Video Streaming

Qualitative and Semantic Communications

KPI Guarantee
- (High-Precision Communications)
- In-Time Guarantee
- On-Time Guarantee
- Lossless Networking
Research Topics Needed for 6G Networks

- **Connectivity**
 - (deliver a packet from S to D)

- **Security**
 - IPv4/v6
 - MPLS, SR

- **Traffic Engineering**
 - (deliver a packet from S to D along a specific path)
 - SRv6/IPv6+, SDN, P4
 - TLS, QUIC
 - MPLS, SR
 - IPv4/v6

- **Programmable Networks**
 - Needed by 6G Apps and Services

- **Qualitative and Semantic Communications**

- **Omni-Convergence**
Deployment Example: OT and ICT Backhaul Transport

New Data Plane (from gNB to Core)

New Data Plane (from gNB to MEC)

IPv6

IPv4

Virtualized UPF

Edge Cloud (Vehicular APPs, NFs)

uRLLC

Edge Cloud (Industrial APPs, NFs)

Core Cloud/CDN (Industrial APPs, NFs)

5G Virtualized Control Plane

5G-UPF

Internet
Selected Publications and Talks

- **Concepts**
 - A New Way to Evolve the Internet, Keynote Speech at IEEE NetSoft 2018, Montreal, Canada, June 2018
 - What if we reimagine the Internet?, Keynote Speech at IEEE ICII 2018, Bellevue, Washington, USA, Oct 2018
 - New IP: Going beyond the Limits of the Internet, Keynote Speech, IEEE Globecom 2019, Big Island, USA, Dec 9-13, 2019
 - What is New IP about? Industry Keynote Speech, IEEE Infocom 2020, July 6-9, 2020
 - New IP and Market Opportunities, Keynote Speech, IEEE HPSR 2020, May 11-14, 2020

- **Market Drivers and Requirements**
 - Network 2030: A Blueprint of Technology, Applications and Market Drivers Towards the Year 2030 and Beyond, A White Paper of Network 2030, ITU-T, May 2019
 - Towards a New Internet for the Year 2030 and Beyond, ITU IMT-2020/5G Workshop, Geneva, Switzerland, July 2018
 - Network 2030: Market Drivers and Prospects, ITU-T 1st Workshop on Network 2030, New York City, New York, October 2018
 - Next Generation Networks: Requirements and Research Directions, ETSI New Internet Forum, the Hague, the Netherlands, October 2018

- **Framework and Architecture**
 - A New Framework and Protocol for Future Networking, ACM Sigcomm 2018 NEAT Workshop, Budapest, August 20, 2018
 - A Framework for Qualitative Communications using Big Packet Protocol, ACM Sigcomm 2019 NEAT Workshop, Beijing, August 19, 2019
 - Qualitative Communication for Emerging Network Applications with New IP, IEEE MSN 2021, 2021

- **New Technologies or Algorithms**
 - A. Clemm and T. Eckert, High-Precision Latency Forwarding over Packet Programmable Networks, IEEE NOMS 2020, April 2020
 - Preferred Path Routing – A Next-Generation Routing Framework beyond Segment Routing, IEEE Globecom 2018, December 2018
 - Flow-Level QoS Assurance via In-Band Signaling, 27th IEEE WOCC 2018, 2018
 - Using Big Packet Protocol Framework to Support Low Latency based Large Scale Networks, ICNS 2019, Athens, 2019
Concluding Remarks

- Three challenges for 6G networks: omni-convergence, KPI guarantee and holographic type communications
- Existing networks are not suitable for 6G applications and use cases
- A new data plane protocol is motivated by solving problems as commonly found in:
 - Industrial machine-type communications (Industry 4.0, Industrial Internet, Industrial IoT, Industrial Automation)
 - Emerging applications such as holographic type communications
 - IP Mobile Backhaul Transport for 5G/B5G uRLLC, mMTC, especially when Connecting Industrial Networks
 - Emerging Industry Verticals (driverless vehicles, smart agriculture)
 - ITU-T Network 2030
- The new data packet protocol is an extension and optimization of IP with new functions (capabilities, features), and is being designed to be interoperable with IPv4, IPv6 and many others
- Research and empirical results have been published in ITU, IEEE, and ACM. Some industrial manufacturing-related companies, service providers and network operators have shown their interest for their real problems and applications.
Thank you!