

Escuela Superior de Ingeniería

Multifractal Analysis of Thermal Images of Electronic Devices in Different Colour Profiles

Marina Díaz-Jiménez¹, Juan Carlos de la Torre², Javier Jareño-Dorado², Patricia Ruiz¹, Bernabé Dorronsoro Díaz ²and Pablo Pavón-Domínguez ¹

Presenter: Marina Díaz-Jíménez^{1*}

- ¹ Department of Mechanical Engineering and Industrial Design, University of Cádiz, Spain
- ² Department of Computer Science Engineering, University of Cádiz, Spain
- *Corresponding author. e-mail: marina.diaz@uca.es

Marina Díaz-Jiménez, a graduated in Industrial Desing and Product Development in Engineering, is currently studying for a Master's degree in Manufacturing Engineering at the University of Cádiz.

She embarked on her research career by focusing on the microgeometric characterization of porous images using fractal and multifractal geometry.

Currently, she is working as a researcher at the University of Cádiz, with her research centered on the characterization of one-dimensional signals (consumption signals) through the application of fractal and multifractal geometry.

1. Introduction

- 2. Aims and contributions
- **3.** Theoretical Foundations
- 4. Methodology
- **5.** Results
- **6.** Conclusions

1. Introduction

Images in different colour formats RGB, CMYK, HSV and HSI

Thermal images of electronic device

In order to make a first approach towards the characterization of electronic devices based on heat dissipation

Multifractal geometry

Suitable candidate for characterizing complex geometric shapes

Box-counting method and Method of Moments

They allow to extract the main multifractal parameters: Dimension Function, D(q), and the Degree of Multifractality, $\Delta D(q)$.

2. Aims and contributions

To make a methodology using multifractal approach to characterise images in different colour formats

To make a preliminary study for the accurate characterization of electronic devices in terms of heat dissipation using multifractal analysis.

3. Theoretical Foundations

EUCLIDEAN GEOMETRY

- Objects composed of points, curves, surfaces and volumes
- Topological integer dimensions (0, 1, 2 and 3)
- The **measurement** of an object is **independent** of the scaling measure

$$L = N \cdot \delta$$

- Objects with irregular, rough and disordered shapes and contours
- Objects with self-similarity property
- The **measurement** of an object is **dependent** of the scaling measure

$$L(\delta) = N(\delta) \cdot \delta$$

3. Theoretical Foundations

MULTIFRACTAL STRUCTURE

Superposition of subsets of monofractal structures interwoven through a hierarchy of scaling exponents characterizing local variability and heterogeneity

MULTIFRACTAL ANALYSIS

Description of complex structures exhibiting sets of regions with different fractal properties, providing a relatively more specific characterization

BOX-COUNTING METHOD AND METHOD OF MOMENTS

They allow to extract the main multifractal parameters

MULTIFRACTAL PARAMETERS

- Generalized dimensions function, D(q)
- Degree of Multifractality, $\Delta D(q)$

4. Methodology

Multifractal Analysis: Box-counting method and the Method of Moments

Side (*L*) = $2^9 = 512$ pixels

• Estimation of the generalized dimensions function, D(q)

• *n* = number of boxes to cover the image

• δ = side length

- $n(\delta) \rightarrow$ number of boxes depends on the side length
- $\delta = \{L/1, L/2, L/4, L/8, ...\}$
- q varies between $-\infty$ and $+\infty$

4. Methodology – Experimental Setup

Pi3 Raspian Desktop board

Experimental setup

- Image capture time: 1 hour (3,600 seconds) → From t_0 = 0 s, when the board is off, to a t_1 = 3,600s, when the board is on
- Total images: 31,970 images
- Capture rate: 8-9 images per second
- Images obtained: images of 320x240 pixels

Images of different areas of the board

Image dimensions: 128 x 128 pixels

4. Methodology

Grey-scale (GS) images as a reference \rightarrow They are considered to represent the most faithful and realistic situation to the raw files captured by the camera

Multifractal Analysis of Grey-scale images

For images of 128 x 128 pixels:

- Scale range: $\delta = 1$ to $\delta = 128$
- q moments from -4 to 4

Degree of multifractality, $\Delta D(q)$	Image area 1	0.279
	Image area 2	0.059
	Image area 3	0.074

Monofractal behaviour is considered in all three cases

Multifractal Analysis of RGB images

x^2 Channel R SB^a $\Delta D(q)$ Region 1. δ = 1 - 4 Region 2. δ = 8 - 32 $\Delta D(q)$ Image 1 Region 3. δ = 32 - 128 \checkmark 2.051 6.363 Region 1. δ = 1 - 8 -- $\Delta D(q)$ Image 2 Region 2. δ = 16 - 128 2.400 8.150 \checkmark Region 1. δ = 1 - 4 $\Delta D(q)$ Image 3 Region 2. δ = 8 - 32 -- $\sum x^2$ Channel G SB^a $\Delta D(q)$ Region 1. δ = 4 - 16 2.224 9.179 \checkmark $\Delta D(q)$ Image 1 Region 2. δ = 16 - 128 0.588 \checkmark 0.165 Region 1. δ = 1 - 128 $\Delta D(q)$ Image 2 \checkmark 0.072 0.001 Region 1. δ = 4 - 16 3.112 \checkmark 21.062 $\Delta D(q)$ Image 3 Region 2. δ = 16 - 128 0.436 0.186 \checkmark $\sum x^2$ $\Delta D(q)$ Channel B SB^a Region 1. δ = 1 - 4 --- $\Delta D(q)$ Image 1 Region 2. δ = 8 - 128 1.862 4.937 \checkmark Region 1. δ = 4 - 16 1.980 8.251 \checkmark $\Delta D(q)$ Image 2 Region 2. δ = 16 - 128 \checkmark 0.315 0.116 Region 1. $\delta = 1 - 4$ - $\Delta D(q)$ Image 3 Region 2. δ = 8 - 32 \checkmark 0.622 0.774

SB^a: Scaling Behaviour

Multifractal Analysis of RGB images

Best approximation to reference images:

- Channel G
- Channel B

	Channel R	SBª	∆D(q)	$\sum x^2$
	Region 1. δ = 1 - 4	-	-	-
$\Delta D(q)$ Image 1	Region 2. δ = 8 - 32	-	-	-
	Region 3. δ = 32 - 128	\checkmark	2.051	6.363
$\Delta D(a)$ Image 2	Region 1. δ = 1 - 8	-	-	-
ΔD(q) Image Z	Region 2. δ = 16 - 128	\checkmark	2.400	8.150
$\Delta D(x)$ image 2	Region 1. δ = 1 - 4	-	-	-
$\Delta D(q)$ image 3	Region 2. δ = 8 - 32	-	-	-
	Channel G	SBª	∆D(q)	$\sum x^2$
	Region 1. δ = 4 - 16	\checkmark	2.224	9.179
$\Delta D(q)$ image 1	Region 2. δ = 16 - 128	\checkmark	0.588	0.165
$\Delta D(q)$ Image 2	Region 1. δ = 1 - 128	\checkmark	0.072	0.001
$\Delta D(x)$ lease 2	Region 1. δ = 4 - 16	\checkmark	3.112	21.062
$\Delta D(q)$ image 3	Region 2. δ = 16 - 128	\checkmark	0.436	0.186
Channel B		SBª	ΔD(q)	$\sum x^2$
	Region 1. δ = 1 - 4	-	-	-
$\Delta D(q)$ image 1	Region 2. δ = 8 - 128	\checkmark	1.862	4.937
$\Delta D(x)$ has a set Ω	Region 1. δ = 4 - 16	\checkmark	1.980	8.251
$\Delta D(q)$ Image 2	Region 2. δ = 16 - 128	\checkmark	0.315	0.116
$\Delta D(x)$ loss $x = 0$	Region 1. δ = 1 - 4	-	-	-
$\Delta D(q)$ image 3	Region 2. δ = 8 - 32	\checkmark	0.622	0.774

SB^a: Scaling Behaviour

Multifractal Analysis of CMYK images

Partition Functions

Scaling Behaviour

	Channel C		
$\Delta D(q)$ Image 1	Region 2. <i>δ</i> = 32 - 128		
	Region 1. <i>δ</i> = 1 - 8		
$\Delta D(q)$ image Z	Region 2. <i>δ</i> = 16 - 128		
$\Delta D(q)$ Image 3	-		
Channel M			
$\Delta D(q)$ Image 1	-		
$\Delta D(q)$ Image 2	Region 2. δ = 32 - 128		
$\Delta D(q)$ Image 3	-		
	Channel Y		
$\Delta D(q)$ Image 1	Region 2. δ = 32 - 128		
$\Delta D(q)$ Image 2	Region 2. δ = 32 - 128		
$\Delta D(q)$ Image 3	-		
Channel K			
$\Delta D(q)$ Image 1	-		
$\Delta D(q)$ Image 2	Region 2. δ = 32 - 128		
$\Delta D(q)$ Image 3	-		

14

Multifractal Analysis of CMYK images

Partition Functions

	Channel C		
$\Delta D(q)$ Image 1	Region 2. δ = 32 - 128		
	Region 1. δ = 1 - 8		
$\Delta D(q)$ image z	Region 2. <i>δ</i> = 16 - 128		
$\Delta D(q)$ Image 3	-		
Channel M			
$\Delta D(q)$ Image 1	-		
$\Delta D(q)$ Image 2	Region 2. <i>δ</i> = 32 - 128		
$\Delta D(q)$ Image 3	-		
	Channel Y		
$\Delta D(q)$ Image 1	Region 2. δ = 32 - 128		
$\Delta D(q)$ Image 2	Region 2. <i>δ</i> = 32 - 128		
$\Delta D(q)$ Image 3	-		
Channel K			
$\Delta D(q)$ Image 1			
$\Delta D(q)$ Image 2	Region 2. <i>δ</i> = 32 - 128		
$\Delta D(q)$ Image 3	- <u> </u>		

Multifractal Analysis of HSV images

Partition Functions

Channel H		
$\Delta D(q)$ Image 1	Region 1. <i>δ</i> = 2 – 128	
$\Delta D(q)$ Image 2	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 3	Region 1. δ = 2 – 128	
Channel S		
$\Delta D(q)$ Image 1	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 2	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 3	Region 1. δ = 1 – 128	
Channel V		
$\Delta D(q)$ Image 1	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 2	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 3	Region 1. δ = 1 – 128	

Multifractal Analysis of HSV images

Partition Functions

All 3 channels are capable of capturing the scaling behaviour of the reference images

Channel H		
$\Delta D(q)$ Image 1	Region 1. δ = 2 – 128	
$\Delta D(q)$ Image 2	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 3	Region 1. δ = 2 – 128	
Channel S		
$\Delta D(q)$ Image 1	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 2	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 3	Region 1. δ = 1 – 128	
Channel V		
$\Delta D(q)$ Image 1	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 2	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 3	Region 1. δ = 1 – 128	

Multifractal Analysis of HSI images

Channel H		
$\Delta D(q)$ Image 1	Region 2. <i>δ</i> = 8 - 32	
$\Delta D(q)$ Image 2	Region 2. <i>δ</i> = 16 – 128	
$\Delta D(q)$ Image 3	Region 2. <i>δ</i> = 8 - 32	
Channel S		
$\Delta D(q)$ Image 1	Region 1. <i>δ</i> = 4 – 128	
$\Delta D(q)$ Image 2	Region 1. <i>δ</i> = 1 – 128	
$\Lambda D(\alpha)$ Image 3	Region 1. δ = 4 – 16	
$\Delta D(q)$ image 5	Region 2. δ = 16 – 128	
Channel I		
$\Delta D(q)$ Image 1	Region 2. <i>δ</i> = 8 – 128	
	Region 1. δ = 4 – 16	
$\Delta D(q)$ image Z	Region 2. δ = 16 – 128	
$\Delta D(q)$ Image 3	Region 2. $\delta = 8 - 32$	

Multifractal Analysis of HSI images

Best approximation to reference images:

- Channel S
- Channel I

Channel H		
$\Delta D(q)$ Image 1	Region 2. <i>δ</i> = 8 - 32	
$\Delta D(q)$ Image 2	Region 2. δ = 16 – 128	
$\Delta D(q)$ Image 3	Region 2. δ = 8 - 32	
Channel S		
$\Delta D(q)$ Image 1	Region 1. δ = 4 – 128	
$\Delta D(q)$ Image 2	Region 1. δ = 1 – 128	
$\Delta D(q)$ Image 3	Region 1. δ = 4 – 16	
	Region 2. δ = 16 – 128	
Channel I		
$\Delta D(q)$ Image 1	Region 2. δ = 8 – 128	
$\Delta D(q)$ Image 2	Region 1. δ = 4 – 16	
	Region 2. δ = 16 – 128	
$\Delta D(q)$ Image 3	Region 2. δ = 8 – 32	

Comparison between grey-scale images and colour formats

D(q) values of grey-scale images compared with D(q) values in each colour format $\rightarrow \sum x^2$

 $\sum x^2 \le 0.2$

HSV colour model provides proper results \rightarrow But three out of the four colour formats studied fail to capture the reference monofractal behaviour

Colour profile		Approximation rate (%)
RGB	Channel R	0%
	Channel G	60%
	Channel B	25%
	Channel C	67%
CMVK	Channel M	0%
СМҮК	Channel Y	0%
	Channel K	0%
	Channel H	67%
HSV	Channel S	100%
	Channel V	100%
	Channel H	0%
HSI	Channel S	50%
	Channel I	250%

Conclusions

Multifractal analysis

Varies depending on both the image format and the colour profile \rightarrow Same image presents different multifractal behaviour depending on the colour format

A new methodology using multifractal approach to characterise images in different colour formats \rightarrow A preliminary study for the accurate characterization of electronic devices in terms of heat dissipation using multifractal analysis

In-Depth study

On the multifractal features images in different colour formats using image analysis benchmarks from the literature is needed

Meta-model

Range of scales

In which different formats would consider their "understanding" of the image, while that meta-model would combine their "opinions"

Escuela Superior de Ingeniería

Multifractal Analysis of Thermal Images of Electronic Devices in Different Colour Profiles

Marina Díaz-Jiménez¹, Juan Carlos de la Torre², Javier Jareño-Dorado², Patricia Ruiz¹, Bernabé Dorronsoro Díaz ²and Pablo Pavón-Domínguez ¹

Presenter: Marina Díaz-Jíménez^{1*}

- ¹ Department of Mechanical Engineering and Industrial Design, University of Cádiz, Spain
- ² Department of Computer Science Engineering, University of Cádiz, Spain
- *Corresponding author. e-mail: marina.diaz@uca.es

