
Optimized Hardware Configuration for High Performance Computing Systems

Optimized Hardware Configuration for High
Performance Computing Systems

Scott Hutchison, Daniel Andresen, William Hsu,
Mitchell Neilsen, and Benjamin Parsons

scotthutch@ksu.edu, dan@ksu.edu, bhsu@ksu.edu,
neilsen@ksu.edu, ben.s.parsons@erdc.dren.mil

September 13, 2023

1/28

Optimized Hardware Configuration for High Performance Computing Systems

About Scott Hutchison

▶ BS in Computer Science
Texas A&M University, 2005

▶ MS in Cyber Operations
Air Force Institute of Technology, 2015

▶ PhD Student at Kansas State
University since 2021

▶ Research Interests:
▶ HPC scheduling, optimization,

infrastructure, and design.
▶ Machine Learning for HPC

applications, reinforcement learning,
recommender systems.

2/28

Optimized Hardware Configuration for High Performance Computing Systems

Outline

Introduction and Problem Statement

Background and Related Work

Methodology

Results

Discussion

Conclusions

Bibliography

Questions

3/28

Optimized Hardware Configuration for High Performance Computing Systems

Introduction and Problem Statement

Introduction

▶ HPC administrators face tough decisions when faced with
upgrading or replacing HPC systems

▶ Server capabilities (memory, cpus, gpus, etc.) greatly effect
cost

▶ Requirements drive optimal server package (e.g. Do HPC
users often submit GPU accelerated workloads?)

▶ What server package should be purchased for a given budget?

▶ No one right answer, but how can we get the “best bang for
our buck”?

▶ Procurement decisions often made by administrator intuition
or preference.

▶ Can data help inform this procurement decision?

4/28

Optimized Hardware Configuration for High Performance Computing Systems

Introduction and Problem Statement

Problem Statement

Problem Statement
For a planned HPC expansion, can experimental simulation provide
an optimal set of hardware under a given budget which will
minimize job wait time?

5/28

Optimized Hardware Configuration for High Performance Computing Systems

Background and Related Work

Related Work

Hardware Optimization Related Research:
▶ Evans et. al [1] used benchmarks for various

software/hardware combinations to optimize CPU/GPU ratios
▶ Application runtime on HPC systems does not account for

queue times in HPC environment

▶ Kutzner et. al [2] optimized for a particular application
(GROMACs)
▶ Application specific optimizations work best for systems with

many homogeneous jobs

6/28

Optimized Hardware Configuration for High Performance Computing Systems

Background and Related Work

Related Work (cont.)

HPC Workloads and Scheduling Algorithms:
▶ Various public HPC workloads exist [3], but fail to include

jobs requesting GPUs.
▶ Used log data from submitted jobs from our local HPC system

▶ Many different scheduler options (Slurm, PBS, HTCondor,
etc.), but scheduling algorithms are highly customizable
and/or proprietary

▶ Various HPC simulators also exist (SimGrid, GridSim, Alea,
etc.), but were deemed either overly complex or failed to allow
for three job constraints (CPUs, Memory, GPUs).
▶ Used Best Fit Bin Packing (BFBP) algorithm and a self

implemented HPC Discrete Event Simulator

7/28

Optimized Hardware Configuration for High Performance Computing Systems

Background and Related Work

Related Work (cont.)

▶ New hardware may perform better/worse than current HPC
hardware

▶ Job running duration was scaled according to the SPEC
CPU2017 CPU benchmark [4]

▶ Sharkawi et al. [5] successfully used a similar SPEC
benchmark to estimate the performance projections of HPC
applications.

▶ Wang et al. [6] have pointed out that these benchmarks fail
to account for all the variables affecting job resource
utilization and should be avoided.

▶ Code written to easily allow different or no scaling

8/28

Optimized Hardware Configuration for High Performance Computing Systems

Background and Related Work

Contributions

Contributions of this work

1. A Discrete Event Simulator for modeling HPC scheduling
▶ https://github.com/shutchison/

hpc-discrete-event-simulator

2. A data set consisting of almost 12,700 HPC scheduling
simulations, each with a different HPC server set

3. An optimized XGBoost regression model for predicting
AvgWaitTime when given a composition of servers

4. A recommender system with precision@50=92% which can
inform hardware procurement decisions when expanding or
replacing a HTC or HPC system
▶ https://github.com/shutchison/

Optimal-Hardware-Procurement-for-a-HPC-Expansion

9/28

https://github.com/shutchison/hpc-discrete-event-simulator
https://github.com/shutchison/hpc-discrete-event-simulator
https://github.com/shutchison/Optimal-Hardware-Procurement-for-a-HPC-Expansion
https://github.com/shutchison/Optimal-Hardware-Procurement-for-a-HPC-Expansion

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Methodology
1. Receive vendor quotes with potential server options.

2. Generate potential server combinations to purchase under the
specified budget which meet our procurement requirements.

3. Identify a typical set of jobs representing the workloads
typically submitted to our HPC system.

4. Conduct simulations using a subset of the server packages to
schedule the representative job set and compute metrics to
determine their performances.

5. Use machine learning to train and refine a model that can
predict the performance of un-simulated server combinations.

6. Develop a recommender system using the machine learning
model.

7. Subjectively evaluate the recommended server packages and
make a more informed procurement decision.

10/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Methodology

11/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Computing Server Combinations

Computing Server Combinations
▶ Received two vendor quotes, separate 21 possible servers into

three different server categories:
▶ Compute nodes, big memory nodes, GPU nodes

Number of Server
Types in Category

Range of Memory
per Node

Range of CPUs per
Node

Range of GPUs per
Node

Cost Range per
Node

Compute Nodes 4 256-512 Gb 24-64 cores 0 GPUs $6,000 - $10,000

Big Memory Nodes 2 1024 Gb 24-64 cores 0 GPUs $11,000 - $13,000

GPU Nodes 15 256-1024 Gb 24-64 cores 1-8 GPUs $14,000 - $100,000

▶ Fix budget at $1 million
▶ Generate all server combinations:

1. For each combination of one compute node, one big memory
node, and one GPU node:

2. Purchase as many nodes as possible under the $1 million
budget such that we cannot purchase another server AND

3. Each combination contains at least 1 GPU node.

▶ Produced appox. 127,000 combinations of affordable server
packages

12/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Computing Server Combinations

Simplifying Assumptions

1. No budget for additional server infrastructure
▶ Considered a “fixed cost” across all server packages
▶ Could reduce budget and apply same procedure

2. Existing HPC infrastructure not included in server package for
simulations
▶ Considered a “fixed benefit” which each server composition

would benefit equally from

Server package example:
ComputeNode1, $6,960 BigMemNode1, $11,112 GPUNode1, $14,730 . . . Package Cost Money Left

141 0 1 . . . $996,090 $3,910

139 1 1 . . . $993,282 $6,718

138 2 1 . . . $997,434 $2,566
...

...
...

. . .
...

...

0 1 67 . . . $998,022 $1,978

13/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Job Selection

Job Selection

▶ One typical day of jobs
(∼16,000 jobs) selected
from local HPC log data

▶ Jobs were “bursty” and
requested a variety of
CPU/memory/GPU
resources

▶ Job duration scaled:
New duration = logged duration∗logged processor performance

new processor performance

14/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Discrete Event Simulator

HPC Discrete Event Simulator

▶ Jobs and Machines are
loaded from a CSV file

▶ Machines have 3 limiting
resources: CPUs, Memory,
and GPUs

▶ Jobs are specified with:
submit time, actual
duration, and requested
duration, memory, CPUs,
and GPUs. Jobs track start
time and end time.

▶ Used BFBP scheduling
(could use FIFO, SJF, etc.)

Algorithm Best Fit Bin Packing Scheduling

1: while The simulation is incomplete do
2: if Some job in the queue can be executed

on some machine then
3: Find the (job, machine) pairing which

results in the fewest remaining resources for
some machine. Begin executing that job on
that machine.

4: else
5: Advance simulation time until a new job

is submitted or a running job ends, whichever
is sooner.

6: Queue submitted jobs and stop ending
jobs.

7: end if
8: end while

15/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Machine Learning

Machine Learning

▶ Simulating every server composition would take too long (∼30
minutes per simulation)
▶ Accomplished using HPC resources

▶ Tried various regression techniques and chose the best
performing

16/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Model Development and Recommender System

Model Development and Recommender System

▶ Aggregate all simulated data (approx. 12,700 simulations)

▶ Shuffle and split into 90% training and 10% test

▶ Apply various machine learning regression techniques using
five fold cross validation on training data, evaluating with the
test data

▶ XGBoost [7] produced the lowest RMSE

▶ Randomized grid search for hyper parameter optimization

▶ Sort by AvgWaitTime predictions made by trained model to
power recommender system. Take top k predictions and
evaluate using precision@k, recall@k, and f1@k on test data

17/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Recommender System

Recommender System

▶ “Hits” defined as server sets with the lowest 5% AvgWaitTime

▶ Precision@k - User requests k items, what percentage of them
are hits?

▶ Recall@k - User requests k items, what percentage of the
total hits are retrieved?
▶ Unfairly penalizes when: k ≪ total number of hits

▶ F1@k - Harmonic mean of Precision@k and Recall@k

18/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Evaluation

Evaluation

▶ Root Mean Squared Error (RMSE) used for model comparison

▶ AvgQueueTime measured from simulator log data

For N jobs:

AvgWaitTime =
ΣN
i=0(Start Timei − Submit Timei)

N

RMSE =

√
ΣN
i=0(actual wait timei − predicted wait timei)

2

N

19/28

Optimized Hardware Configuration for High Performance Computing Systems

Methodology

Evaluation

Evaluation (cont.)

▶ Recommendor system evaluated with precision@k, recall@k,
and f1@k
▶ Top 5% of simulated data set with the lowest AvgWaitTime
▶ 632 server configurations “hits” from the test data set

Precision@k =
(# of recommended items @k that are relevant)

(# of recommended items @k)

Recall@k =
(# of recommended items @k that are relevant)

(total # of relevant items)

F1@k =
(2 ∗ precision@k ∗ recall@k)
(precision@k + recall@k)

20/28

Optimized Hardware Configuration for High Performance Computing Systems

Results

Feature Correlation

Feature Correlation

▶ Pearson Correlation coefficients closer to 1 or -1 indicate
stronger correlation between variables

▶ TotalCPUs was strongly correlated to AvgWaitTime with a
correlation coefficent
▶ Implies that, for the chosen jobs, the number of CPUs in the

package was the limiting factor

▶ Positive correlation of TotalGPUs implies the more GPUs we
purchase, the fewer CPU nodes we can afford

TotalMem TotalCPUs TotalGPUs AvgWaitTime

TotalMem 1.00 0.14 -0.54 -0.23

TotalCPUs 0.14 1.00 -0.42 -0.70

TotalGPUs -0.54 -0.42 1.00 0.44

AvgWaitTime -0.23 -0.70 0.44 1.00

21/28

Optimized Hardware Configuration for High Performance Computing Systems

Results

Regression Model Performance

XGBoost Model Performance

▶ XGBoost RMSE = 150.13
seconds

▶ TotalCPUs, TotalMemory,
TotalGPUs does a good job
at predicting AvgWaitTime

22/28

Optimized Hardware Configuration for High Performance Computing Systems

Results

Recommender System Performance

Recommender System Performance (Quantitative)

▶ Threshold was the top 5%
server compositions with the
lowest AvgWaitTime (632
“hits” in the test data set)

▶ Higher values of k have
good recall@k

▶ Precision@50 = 92%
indicates that if the
recommender system returns
50 results 46 of them will be
in the top 5% of performing
combinations

k value Precision@k Recall@k F1@k

10 1.00 0.02 0.03

50 0.92 0.07 0.13

100 0.81 0.13 0.22

500 0.74 0.59 0.66

632 0.72 0.72 0.72

1000 0.58 0.91 0.71

23/28

Optimized Hardware Configuration for High Performance Computing Systems

Discussion

Recommended Server Compositions

Recommender System Performance (Subjective)
▶ XGBoost regression model used to predict performance of

un-simulated server combinations

Sum of servers in top 50 recommendations:
Node Type Node Description Sum of Servers Across

Top 50

Compute Nodes

Cheapest w/ 256Gb 232
Cheapest w/ 512Gb 0
Expensive w/ 256Gb 3,467
Expensive w/ 512Gb 0

Big Memory Nodes
Cheapest w/ 1024Gb 232
Expensive w/ 1024Gb 111

GPU Nodes
2 GPUs in one server 732
4 GPUs in one server 267

▶ Compute node: More cores with less memory

▶ Big memory node: Cheaper processor with fewer cores

▶ GPU node: Fewer GPUs per node

▶ Budget breakdown: 58% on compute nodes,
8% on big memory nodes, 34% on GPU nodes

24/28

Optimized Hardware Configuration for High Performance Computing Systems

Conclusions

Conclusions

▶ Technique is NOT intended to replace human-in-the-loop
decision makers, but act as another informative tool

▶ k=50 is thought to be a reasonable “human parsable” amount
of data vs. 127,000 possible server combinations

▶ 92% precision@50 for this application is thought to be
excellent

▶ Precision@50 shows recommendor system is viable for
assisting with narrowing down alternatives to a reasonable set
of alternatives for evaluation by experts

▶ Development of regression model saved time/compute
resources vs. simulating all possible combinations

25/28

Optimized Hardware Configuration for High Performance Computing Systems

Conclusions

Model and data use

Use of this data and model

▶ Model and data set are made freely available under the GPLv3
license

▶ Code used for this research is also available

▶ https://github.com/shutchison/

Optimal-Hardware-Procurement-for-a-HPC

▶ If it will be of some value to you, please use it!

26/28

https://github.com/shutchison/Optimal-Hardware-Procurement-for-a-HPC
https://github.com/shutchison/Optimal-Hardware-Procurement-for-a-HPC

Optimized Hardware Configuration for High Performance Computing Systems

Bibliography

Bibliography
[1] R. T. Evans et al., “Optimizing gpu-enhanced hpc system and cloud procurements for scientific workloads,” in International Conference on High

Performance Computing, pp. 313–331, Springer, 2021.

[2] C. Kutzner et al., “More bang for your buck: Improved use of gpu nodes for gromacs 2018,” Journal of computational chemistry, vol. 40, no. 27,
pp. 2418–2431, 2019.

[3] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using the parallel workloads archive,” Journal of Parallel and Distributed Computing, vol. 74,
no. 10, pp. 2967–2982, 2014.

[4] “Second quarter 2023 spec cpu2017 results,” 2023.
https://www.spec.org/cpu2017/results/res2023q2, Accessed on June 14, 2023.

[5] S. Sharkawi et al., “Performance projection of hpc applications using spec cfp2006 benchmarks,” in 2009 IEEE International Symposium on Parallel &
Distributed Processing, pp. 1–12, IEEE, 2009.

[6] Y. Wang, V. Lee, G.-Y. Wei, and D. Brooks, “Predicting new workload or cpu performance by analyzing public datasets,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 15, no. 4, pp. 1–21, 2019.

[7] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, (New York, NY, USA), pp. 785–794, ACM, 2016.

See paper for exhaustive list of references

27/28

Optimized Hardware Configuration for High Performance Computing Systems

Questions

Questions

Questions?

28/28

	Introduction and Problem Statement
	Background and Related Work
	Contributions

	Methodology
	Computing Server Combinations
	Job Selection
	Discrete Event Simulator
	Machine Learning
	Model Development and Recommender System
	Recommender System
	Evaluation

	Results
	Simulated AvgQueueTime Results
	Feature Correlation
	Regression Model Performance
	Recommender System Performance

	Discussion
	Recommended Server Compositions

	Conclusions
	Model and data use

	Bibliography
	Questions

