
1

Towards Transforming OpenAPI Specified Web Services into 
Planning Domain Definition Language Actions for Automatic Web Service 
Composition 

Christian Schindler, Christoph Knieke, 
Andreas Rausch, and Eric Douglas Nyakam Chiadjeu

Technische Universität Clausthal
Institute for Software and Systems Engineering
Clausthal-Zellerfeld, Germany

The Fifteenth International Conference on
Adaptive and Self-Adaptive Systems and 
Applications ADAPTIVE 2023 



22

About the presenter
§ Christian Schindler received a master‘s degree in business informatics from the university of 

Mannheim, Germany in 2016. He is currently a doctoral researcher at the Institute for Software and 
Systems Engineering at Technische Universität Clausthal, Germany.

§ Research interest lies in software engineering, software architecture and inductive rule learning

§ Our group (Data-based Software Engineering Methods and Tools) is interested in utilizing all kinds of 
data along the lifecycle of complex systems (development artifacts, models, runtime traces …) to 
support the engineering process.

§ We develop methods and tools from supporting decision-making up to automating parts of the 
engineering process.



33

Goal
§ Enabling ad-hoc composition of available web service descriptions without the need to explicitly 

configure all possible combinations upfront
- flexibly compose web services on-the-fly based on user specific requirements
- seamless integration of different web service descriptions by automatically handling the 

composition process
§ Preparing the self-adaptive composition mechanism

- dynamically adjust and optimize the composition of web services based on changing conditions
- Previously unseen requirements
- (un)available service descriptions



44

Contribution
§ Developed a set of rules for transforming web service specifications (OpenAPI) into Planning Domain 

Definition Language (PDDL) actions and domains to enable composition and meet higher-level 
requirements within the overall platform.

§ Creation of actions (with parameters, preconditions, and effects) and the corresponding domain from 
OpenAPI specifications and the underlying data schema.



55

Context: Platformarchitecture



66

Motivating example for the PDDL based description to enable composition of web 
service (1) 



77

Motivating example for the PDDL based description to enable composition of web 
service (2) 



88

Motivating example for the PDDL based description to enable composition of web 
service (3) 



99

Motivating example for the PDDL based description to enable composition of web 
service (4) 



1010

Rules (1/5): Action creation

• Each method of each path in the OpenAPI Spec 
corresponds to one Action (PDDL)

• Naming schema method_path
• Unique identifiers (optional) to prevent duplicated 

actions across multiple OpenAPI Specs



1111

Rules (2/5): Precondition collection

• Preconditions are gathered by processing the parameters, such as the 
requestBody

• The idea is that parameters must be present before calling the web service
• Iteration over the schema of the requestBody is performed

• Schema elements of type "object" are added as new Precondition 
Predicates

• Schema elements of primitive types become Parameters of the parent 
Precondition



1212

Rules (3/5): Effect collection

• Like the Precondition collection, but with information from the responseBody



1313

Rules (4/5): Parameter collection

• Parameters from the Preconditions and Effects are collected and added as 
Action Parameter



1414

Rules (5/5): Creation of the PDDL Domain

• Iteration over all relevant requestBodies and responseBodies in the OpenAPI Spec

• Primitive elements are added as types in the PDDL Domain without duplicates

• Elements of type "object" are added as predicates in the domain. 

• Primitive child elements become their parameter types to conform to the Preconditions 
and Effects of the Actions



1515

Mapping Example - Overview



1616

Conclusion
§ The usefulness of transforming OpenAPI into PDDL has been motivated, showcasing its practical 

value.
§ The transformation has been aligned with our goal of developing a self-adaptive platform.
§ Rules for the transformation have been defined and applied successfully.
§ An example was provided to demonstrate the transformation process and its outcomes.

§ Future work includes exploring methods to ensure the quality of the transformation, leveraging expert 
knowledge to enhance coherence between inputs and outputs.

§ Further extension of the transformation is planned to incorporate more technical details, such as 
- different response codes, 
- parameter requirements, and 
- content types in web service descriptions.

Future Work



1717

BACKUP



1818

Rules
§ Action creation:

- Each method of each path in the OpenAPI Spec corresponds to one Action (PDDL)
- Naming schema method_path
- Unique identifiers (optional) to prevent duplicated actions across multiple OpenAPI Specs

§ Precondition collection:
- Preconditions are gathered by processing the parameters, such as the requestBody
- The idea is that parameters must be present before calling the web service
- Iteration over the schema of the requestBody is performed

- Schema elements of type "object" are added as new Precondition Predicates
- Schema elements of primitive types become Parameters of the parent Precondition

§ Effect collection:
- Like the Precondition collection, but with information from the responseBody

§ Parameter collection:
- Parameters from the Preconditions and Effects are collected and added as Action Parameter

§ Creation of the PDDL Domain:
- Iteration over all relevant requestBodies and responseBodies in the OpenAPI Spec
- Primitive elements are added as types in the PDDL Domain without duplicates
- Elements of type "object" are added as predicates in the domain. 

- Primitive child elements become their parameter types to conform to the Preconditions and Effects of the Actions


